The ABCs of RBCs
An Introduction to Dynamic Macroeconomic Models
George McCandless
Preface
Introduction
Part One: Basic Models And Solution Methods
1. The Basic Solow Model
 The Basic Model
 Technological Growth
 The Golden Rule
 A Stochastic Solow Model
 Log-Linear Version of the Solow Model
 Capital
 Output
 Reprise
2. Savings in an OLG Model
 The Basic OLG Model
 An Example Economy
 Dynamics
 A Stochastic Version
 Reprise
 Matlab Code Used to Produce Figure 2.2
3. Infinitely Lived Agents
 A Robinson Crusoe Economy with Fixed Labor
 Variational Methods
 A Robinson Crusoe Economy with Variable Labor
 The General Model
 Solution for a Sample Economy
 A Competitive Economy
 The Second Welfare Theorem
 An Example Where the Representative Agent Economy and the Decentralized Economy Are Not Equal
 Reprise
4. Recursive Deterministic Models
 States and Controls
 The Value Function
 A General Version
 Returning to Our Example Economy
 Another Version of the Same Economy
 An Approximation of the Value Function
 An Example with Variable Labor
 Reprise
 Matlab Code for Figures 4.2 and 4.3
5. Recursive Stochastic Models
 Probability
A Simple Stochastic Growth Model
 A General Version
 The Problem of Dimensionality
 The Value Function for the Simple Economy
 Calculating the Value Functions
Markov Chains
Reprise
Matlab Code
6. Hansen’s RBC Model
 Hansen’s Basic Model
 Log Linearization Techniques
 The Basics of Log Linearization
 Uhlig’s Method of Log Linearization
 Log-Linear Version of Hansen’s Model
 Solution Using Jump Variables
 Calibration of the Log-Linear Model
 Variances of the Variables in the Model
 Hansen’s Model with Indivisible Labor
 Stationary State
 Log-Linear Version of the Indivisible Labor Model
Impulse Response Functions
Reprise
Appendix 1: Solving the Log-Linear Model
Appendix 2: Blanchard and Kahn’s Solution Method
 General Version
 Stochastic Shocks
 Hansen’s Model and Blanchard-Kahn
 The Generalized Schur Method
 Matlab Code
 Solution to Basic Hansen Model
 Approximating the Variances
Code for Appendix 2
7. Linear Quadratic Dynamic Programming
 Taylor Approximations of the Objective Function
 The Method of Kydland and Prescott
 An Example
 Solving the Bellman Equation
 Calibrating the Example Economy
 Adding Stochastic Shocks
 The Example Economy
 Calibrating the Example Economy
 Hansen with Indivisible Labor
 Impulse response functions
 Vector Autoregressions
 An Alternative Process for Technology
 Reprise

2
Matlab Code

Part Two: Extensions Of The Basic Rbc Model

8. Money: Cash in Advance
Cooley and Hansen’s Model
 Finding the Stationary State
 Solving the Model Using Linear Quadratic Methods
 Finding a Quadratic Objective Function
 Finding the Economy Wide Variables
 Solving the Model Using Log Linearization
The Log Linearization
 Solving the Log-Linear System
 Impulse Response Functions
Seigniorage
 The Model
 The Stationary State
 Log-Linear Version of the Model
Reprise
Appendix 1: CES Utility Functions
Appendix 2: Matrix Quadratic Equations
Matlab Code for Solving the CES Model with Seigniorage

9. Money in the Utility Function
The Model
 Stationary States
 Log-Linear Version of the Model
Seigniorage
 The Full Model
 Stationary States
 Log Linearization
Reprise

10. Staggered Pricing Model
The Basic Model
 The Final Goods Firms
 The Intermediate Goods Firms
 The Family
 Equilibrium Conditions
 The Full Model
 The Stationary State
Log Linearization
 Log Linearization of the Firm’s Problem
The Final Goods Pricing Rule
The Intermediate Goods Pricing Rule
 Inflation Equation (Phillips Curve)
Log Linear Version of the Model
 Solving the Log Linear Model
Impulse Response Functions
Inflation Adjustment for Nonoptimizing Firms