1 Handling two step ahead expectations

Consider a model where x_{t} is a vector of state variables, y_{t} is a vector of jump variables and z_{t} is a vector of stochastic variables. What is different here is that two period ahead expecations of the state variables appear in the model. We can write the model in the form

$$
\begin{aligned}
A x_{t}+B x_{t-1}+C y_{t}+D z_{t} & =0 \\
\widehat{F} x_{t+2}+F x_{t+1}+G x_{t}+H x_{t-1}+\widehat{J} y_{t+2}+J y_{t+1}+K y_{t}+L z_{t+1}+M z_{t} & =0
\end{aligned}
$$

where the processes for the stochastic variables can be written as

$$
\begin{gathered}
z_{t}=N z_{t-1}+\varepsilon_{t} \\
z_{t+1}=N z_{t}+\varepsilon_{t+1}
\end{gathered}
$$

and

$$
z_{t+2}=N z_{t+1}+\varepsilon_{t+2}
$$

We are looking for policy funcitons of the form

$$
\begin{aligned}
x_{t} & =P x_{t-1}+Q z_{t} \\
y_{t} & =R x_{t-1}+S z_{t}
\end{aligned}
$$

Substitute these policy functions into the model above (repeatedly substuting for the one and two step ahead forecasts and get the equation

$$
\begin{aligned}
0= & \widehat{F} P P P x_{t-1}+\widehat{F} P P Q z_{t}+\widehat{F} P Q N z_{t}+\widehat{F} \varepsilon_{t+1}+\widehat{F} Q N N z_{t}+\widehat{F} Q N \varepsilon_{t+1}+\widehat{F} Q \varepsilon_{t+2} \\
& +F P P x_{t-1}+F P Q z_{t}+F Q N z_{t}+F Q \varepsilon_{t+1}+G P x_{t-1}+G Q z_{t}+H x_{t-1} \\
& -\widehat{J} C^{-1}(A P+B) P P x_{t-1}-\widehat{J} C^{-1}(A P+B) P Q z_{t} \\
& -\widehat{J} C^{-1}(A P+B) Q N z_{t}-\widehat{J} C^{-1}(A P+B) Q \varepsilon_{t+1} \\
& -\widehat{J} C^{-1}(A Q+D) N N z_{t}-\widehat{J} C^{-1}(A Q+D) N \varepsilon_{t+1}-\widehat{J} C^{-1}(A Q+D) \varepsilon_{t+2} \\
& -J C^{-1}(A P+B) P x_{t-1}-J C^{-1}(A P+B) Q z_{t} \\
& -J C^{-1}(A Q+D) N z_{t}-J C^{-1}(A Q+D) \varepsilon_{t+1}+K P x_{t-1} \\
& +K Q z_{t}+L N z_{t}+L \varepsilon_{t+1}+M z_{t}
\end{aligned}
$$

from the expectations part and

$$
[A P+B+C R] x_{t-1}+[A Q+C S+D] z_{t}=0
$$

from the part without expectations. This last can be solved as

$$
\begin{aligned}
R & =-C^{-1}(A P+B) \\
S & =-C^{-1}(A Q+D)
\end{aligned}
$$

but are in terms of the (yet unknown) P and Q matrices.

From the expectations equation, one can remove the expected values of the error terms greater than t, since they equal zero, and get

$$
\begin{aligned}
0= & {\left[\left(\widehat{F}-\widehat{J} C^{-1} A\right) P^{3}+\left(F-\widehat{J} C^{-1} B-J C^{-1} A\right) P^{2}+\left[G-J C^{-1} B+K\right] P+H\right] x_{t-1} } \\
& +\left[\widehat{F}-\widehat{J} C^{-1} A\right] Q N N z_{t} \\
& +\left[\widehat{F} P+F-\widehat{J} C^{-1} A P-\widehat{J} C^{-1} B-J C^{-1} A\right] Q N z_{t} \\
& +\left[\widehat{F} P P+F P+G-\widehat{J} C^{-1} A P P-\widehat{J} C^{-1} B P-J C^{-1} A P-J C^{-1} B+K\right] Q z_{t} \\
& +\left[L N+M-\widehat{J} C^{-1} D N N-J C^{-1} D N\right] z_{t}
\end{aligned}
$$

Now put together the terms in x_{t-1} and z_{t}. For a solution to hold for all values of x_{t-1} and z_{t}, we need
$0=\left(\widehat{F}-\widehat{J} C^{-1} A\right) P^{3}+\left(F-\widehat{J} C^{-1} B-J C^{-1} A\right) P^{2}+\left[G-J C^{-1} B+K\right] P+H$
and

$$
\begin{aligned}
& 0=\left[\widehat{F}-\widehat{J} C^{-1} A\right] Q N N+\left[\widehat{F} P+F-\widehat{J} C^{-1} A P-\widehat{J} C^{-1} B-J C^{-1} A\right] Q N \\
& +\left[\widehat{F} P P+F P+G-\widehat{J} C^{-1} A P P-\widehat{J} C^{-1} B P-J C^{-1} A P-J C^{-1} B+K\right] Q \\
& +\left[L N+M-\widehat{J} C^{-1} D N N-J C^{-1} D N\right]
\end{aligned}
$$

Once P is known, the second equation can be solved using some characteristics of the $\operatorname{vec}(\cdot)$ operator. Write the second equation as

$$
\widetilde{A} Q N N+\widetilde{B} Q N+\widetilde{C} Q=\widetilde{D}
$$

where the values of \widetilde{A} to \widetilde{D} are the parts in the appropriate brackets. Applying the $\operatorname{vec}(\cdot)$ operator to both sides of this equation gives

$$
\operatorname{vec}(\widetilde{A} Q N N)+\operatorname{vec}(\widetilde{B} Q N)+\operatorname{vec}(\widetilde{C} Q)=\operatorname{vec}(\widetilde{D})
$$

The following theorem is helpful.
Theorem 1 Let A, B, C be matrices whose dimensions are such that the product $A B C$ exists. Then

$$
\operatorname{vec}(A B C)=\left(C^{\prime} \otimes A\right) \cdot v e c(B)
$$

Applying the theorem and the equation becomes

$$
\left(N^{\prime} N^{\prime} \otimes \widetilde{A}\right) \operatorname{vec}(Q)+\left(N^{\prime} \otimes \widetilde{B}\right) \operatorname{vec}(Q)+(I \otimes \widetilde{C}) \operatorname{vec}(Q)=\operatorname{vec}(\widetilde{D})
$$

or

$$
\operatorname{vec}(Q)=\left[\left(N^{\prime} N^{\prime} \otimes \widetilde{A}\right)+\left(N^{\prime} \otimes \widetilde{B}\right)+(I \otimes \widetilde{C})\right]^{-1} \operatorname{vec}(\widetilde{D})
$$

One only needs to put $\operatorname{vec}(Q)$ into the appropriate matrix form to have the desired Q.

To find P, one needs to solve the cubic matrix polinomial. There are a number of methods for doing this. One, that follows Uhlig's method for quadratic matrix equations, follows.

A cubic polynomial is of the form

$$
A P^{3}-B P^{2}-C P-D=0
$$

where P is an $n \times n$ matrix such that $P=\Psi \Lambda \Psi^{-1}$, where Λ is a matrix with eigenvalues on the diagional and Ψ a matrix of the corresponding eigenvectors. Notice that with this notation, $P^{2}=\Psi \Lambda \Psi^{-1} \Psi \Lambda \Psi^{-1}=\Psi \Lambda \Lambda \Psi^{-1}=\Psi \Lambda^{2} \Psi^{-1}$ and $P^{3}=\Psi \Lambda \Psi^{-1} \Psi \Lambda \Psi^{-1} \Psi \Lambda \Psi^{-1}=\Psi \Lambda \Lambda \Lambda \Psi^{-1}=\Psi \Lambda^{3} \Psi^{-1}$. The matrices A, B, C, and D are all $n \times n$. Construct the $3 n \times 3 n$ matrices E and F as

$$
\begin{aligned}
& E=\left[\begin{array}{lll}
B & C & D \\
I & 0 & 0 \\
0 & I & 0
\end{array}\right] \\
& F=\left[\begin{array}{lll}
A & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]
\end{aligned}
$$

The solution to the generalized inverse problem is a set of 3 n eigenvalues, λ, and the corresponding eigenvectors X and we write X as

$$
X=\left[\begin{array}{lll}
X_{11} & X_{12} & X_{12} \\
X_{21} & X_{22} & X_{22} \\
X_{31} & X_{32} & X_{32}
\end{array}\right] .
$$

The matrix Λ has the eigenvalues on the diagional and we can write that as

$$
\Lambda=\left[\begin{array}{ccc}
\Lambda_{1} & 0 & 0 \\
0 & \Lambda_{2} & 0 \\
0 & 0 & \Lambda_{3}
\end{array}\right]
$$

The solution to the generalized eigenvalue problem can be written as

$$
\begin{aligned}
& {\left[\begin{array}{lll}
B & C & D \\
I & 0 & 0 \\
0 & I & 0
\end{array}\right]\left[\begin{array}{lll}
X_{11} & X_{12} & X_{12} \\
X_{21} & X_{22} & X_{22} \\
X_{31} & X_{32} & X_{32}
\end{array}\right] } \\
= & {\left[\begin{array}{lll}
A & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{lll}
X_{11} & X_{12} & X_{12} \\
X_{21} & X_{22} & X_{22} \\
X_{31} & X_{32} & X_{32}
\end{array}\right]\left[\begin{array}{ccc}
\Lambda_{1} & 0 & 0 \\
0 & \Lambda_{2} & 0 \\
0 & 0 & \Lambda_{3}
\end{array}\right] }
\end{aligned}
$$

which, written out, becomes

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
B X_{11}+C X_{21}+D X_{31} & B X_{12}+C X_{22}+D X_{32} & B X_{13}+C X_{23}+D X_{33} \\
X_{11} & X_{12} & X_{12} \\
X_{21} & X_{22} & X_{22}
\end{array}\right] } \\
&=\left[\begin{array}{ccc}
A X_{11} \Lambda_{1} & A X_{12} \Lambda_{2} & A X_{13} \Lambda_{3} \\
X_{21} \Lambda_{1} & X_{22} \Lambda_{2} & X_{22} \Lambda_{3} \\
X_{31} \Lambda_{1} & X_{32} \Lambda_{2} & X_{32} \Lambda_{3}
\end{array}\right]
\end{aligned}
$$

The interesting parts of the equalities from the above matrix are

$$
\begin{aligned}
B X_{11}+C X_{21}+D X_{31} & =A X_{11} \Lambda_{1} \\
X_{11} & =X_{21} \Lambda_{1} \\
X_{21} & =X_{31} \Lambda_{1} .
\end{aligned}
$$

The last two give

$$
\begin{aligned}
X_{11} & =X_{31} \Lambda_{1} \Lambda_{1} \\
X_{21} & =X_{31} \Lambda_{1}
\end{aligned}
$$

So

$$
B X_{31} \Lambda_{1} \Lambda_{1}+C X_{31} \Lambda_{1}+D X_{31}=A X_{31} \Lambda_{1} \Lambda_{1} \Lambda_{1}
$$

and postmultiplying all this by X_{31}^{-1} gives

$$
B X_{31} \Lambda_{1} \Lambda_{1} X_{31}^{-1}+C X_{31} \Lambda_{1} X_{31}^{-1}+D X_{31} X_{31}^{-1}=A X_{31} \Lambda_{1} \Lambda_{1} \Lambda_{1} X_{31}^{-1}
$$

Defining $P=X_{31} \Lambda_{1} X_{31}^{-1}$, one gets

$$
B X_{31} \Lambda_{1}^{2} X_{31}^{-1}+C X_{31} \Lambda_{1} X_{31}^{-1}+D=A X_{31} \Lambda_{1}^{3} X_{31}^{-1}
$$

or

$$
B P^{2}+C P+D=A P^{3}
$$

a P that solves the cubic polynomial equation.

