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1 Introduction

An increasingly standard way of putting bounded rationality into a model is
through the use of least squares learning for the expectation process. Instead
of the rational expectations that we have been using, least squares learning
implies that the agents inside the model have to use data produced by the
model to make least squares forecasts of expectational variables and that these
forecasts are updated each period as a new data point comes available. For the
reader who is uncomfortable with rational expectaions as a working paradyme,
least squares forecasting provides an attractive alternative. For those who are
comfortable with rational expectations, under a range of conditions, equilibria
with least squares forecasting converge to rational expectations equilibria.
In each period, all agents in the model use the same least squares forecasts for

predicting expectational variables in the economy (the model). These forecasts
are done inside the linear model of the economy and result in current values for
the economy that are consistent with these projections. The data that results
from this period provides another set of data points and this data is then used
to update the coe¢ cients of the least squares forecasting equations. The new
coe¢ cients are put into the model to solve for the next period.
It may be the cse that the modeller believes that the economy has under-

gone structural changes or changes in policies so that the parameters of the
least squares forecasting problem are time dependent. In order to allow these
parameters to adjust, it is possible to add a "forgetting" factor to the updating
equation. This forgetting factor gives older data less weight in the estimation
process so that the values of the parameters are weighted more by what has
happened recently. Adding a forgetting factor tends to make the coe¢ cients of
the least squares forecasting equation vary with time and to be more responsive
to recent outcomes of the economy.
Recursive least squares updating is a restricted form of the Kalman �lter. A

simple demonstration of this can be found in Branch and Evans [1] or in Sargent
[6], Chapter 8, Appendix A.
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2 Recursive least squares updating of coe¢ cients

The �rst step is to present the recursive least squares updating procedure. This
recursive least squares updating procedure is used along with a linear model
that includes a expectations equations whose parameters are re -estimated each
period from the updating procedure. In each period t, the linear model is run
and is solved for the equilibrium values for the variables of the model for period
t. The time t values of the variables are then used with the updating procedure
to get new estimates for the paramters for the forecasting equations in the linear
model. These new parameters are then put into the linear model and are used
for forecasting in period t+ 1. This process is repeated.
There are two versions of the recursive ordingary least squares presented in

this section. The �rst version presented is equivalent to ordinary least squares
and the later is equivalent to least squares with forgetting. In the version with
forgetting, older data in the linear regression is given an exponentially smaller
weight for determining current coe¢ cients of the forecasting equations.
Consider a simple linear model of the form

yt = xt't + "t;

where yt is a vector of endogenous variables, xt is the history up to moment t of
the exogenous variables (that could include past values of yt) that are being used
for the estimation, 't is the estimate of the coe¢ cients of the model using data
up to time t� 1 and "t is a vector of error terms. De�ne Xt = [xt; xt�1; :::; x0]0
and Yt = [yt; yt�1; :::; y0]

0 as the available data on xt and yt in period t and
where x0 and y0 are the data for the available initial period. Ordinary least
squares of the estimate of the coe¢ cients, 't, using the data available in period
t is

't = (X
0
tXt)

�1
X 0
tYt:

A way to �nd the least squares coe¢ cients in a recursive manner is to write
the matrices Xt and Yt as

Xt =

�
Xt�1
xt

�
and

Yt =

�
Yt�1
yt

�
:

Then

X 0
tXt =

�
X

0

t�1 x0t
� � Xt�1

xt

�
= X

0

t�1Xt�1 + x
0
txt

and

X 0
tYt =

�
X

0

t�1 x0t
� � Yt�1

yt

�
= X

0

t�1Yt�1 + x
0
tyt

where both x0txt and x
0
tyt are matrices of rank one. For our purposes, it is most

interesting that the square matrix x0txt is of rank one. The inverse of the sum of
an indentity matrix and a rank one matrix has a special, very simple solution.

2



Let I + a0b be an n � n identity matrix and the product of two n dimension
vectors to give an n� n matrix of rank one.1 The inverse of the matrix I + a0b
can be written as

[I + a0b]
�1
= I + ca0b

where
c = � 1

1 + ba0
:

Notice that b0a is simply a scalar. To see that this formula for the inverse is
correct, simply take

[I + ca0b] [I + a0b] = I + ca0b+ a0b+ ca0ba0b

= I � 1

1 + ba0
a0b+ a0b� a0b

1 + ba0
a0b

= I + a0b� 1 + ba
0

1 + ba0
a0b

= I + a0b� a0b = I:

For a more general matrix (since X
0

t�1Xt�1 6= I, in general), multiply
[I + ab0]

�1 by a non-singluar matrix B�1 to get

B�1 [I + a0b]
�1
= [[I + a0b]B]

�1
= [B + a0bB]

�1
:

Using the formula for the inverse from the earlier discussion, we get

B�1 [I + a0b]
�1
= B�1 [I + ca0b] = B�1 + cB�1a0b:

Combining the above two results, we have that

[B + a0bB]
�1
= B�1 + cB�1a0b:

De�ne the vector as f = bB, and substitute this into the above expression to
get

[B + a0f ]
�1
= B�1 + cB�1a0fB�1

where
c= � 1

1 + fB�1a0
:

Using this method of �nding an inverse, we can write�
X 0
t�1Xt�1 + x

0
txt
��1

=
�
X 0
t�1Xt�1

��1
+ c

�
X 0
t�1Xt�1

��1
x0txt

�
X 0
t�1Xt�1

��1
;

(1)
with

c = � 1

1 + xt
�
X 0
t�1Xt�1

��1
x0t
:

1Any rank one n�n matrix can be expressed as the product of two n dimensional vectors.
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Since

't = (X 0
tXt)

�1
X 0
tYt

=
�
X 0
t�1Xt�1 + x

0
txt
��1 �

X
0

t�1Yt�1 + x
0
tyt

�
;

we can replace the expression
�
X 0
t�1Xt�1 + x

0
txt
��1

by what it equals and after
some algebra get

't = 't�1 +

�
X 0
t�1Xt�1

��1
x0t

1 + xt
�
X 0
t�1Xt�1

��1
x0t

�
yt � xt't�1

�
:

De�ne Pt = (X 0
tXt)

�1, then this can be written as

't = 't�1 +
Pt�1x

0
t

1 + xtPt�1x0t

�
yt � xt't�1

�
with the updating rule for Pt, from equation 1, of

Pt =

�
I � Pt�1x

0
t

1 + xtPt�1x0t
xt

�
Pt�1:

Beginning with some initial guesses for P0 and '0, one can recursively calculate
Pt and 't. These converge to the least square estimate.
The formulation of least squares updating derived here is quite robust, given

that one works directly with the matrix Pt and the parameter vector 't and
there is no need to take inverses of matrices.

3 Recursive least squares with forgetting

It may be the case that one wishes to give less weight to much older data, either
because one believes that structural changes occur in a model or because one
believes that individuals are somewhat myopic, and treat more recent observa-
tions as somehow more relevant than older observations. Least squares with
forgetting is a version of the Kalman �lter with constant "gain."
According to Lindo¤ [3], adding "forgetting" to recursive least squares esti-

mation is simple. Choose a � where 0 < � < 1 and adjust the updating rule to
be

P�1t+1 = �P
�1
t + x0t+1xt+1:

Asymptotically, the recursive least squares model with forgetting is equivalent
to a weighted least squares estimation of the form

b't =
 

tX
k=1

�t�kx0kxk

!�1 tX
k=1

�t�kx0kyk

!
:

Notice that this form of a weighted least squares estimator gives every smaller
weights, at the rate �j to data j periods in the past.
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3.1 Linear version of recursive least squares with forget-
ting

To get a linear version of the recursive least squares with forgetting we follow
the same methodology as above but de�ne the matrices X 0

tXt and X
0
tYt as

X 0
tXt =

�
�:5X 0

t�1 x0t
� � �:5Xt�1

xt

�
= �X 0

t�1Xt�1 + x
0
txt

and

X 0
tYt =

�
�:5X 0

t�1 x0t
� � �:5Yt�1

yt

�
= �X 0

t�1Yt�1 + x
0
tyt:

Notice that the forgetting factor � is included in the de�nition. Using these
de�nitions of X 0

tXt and X
0
tYt, the least squares estimator is

't = (X 0
tXt)

�1
X 0
tYt

=
�
�X 0

t�1Xt�1 + x
0
txt
��1 �

�X 0
t�1Yt�1 + x

0
tyt
�
:

Using the linear representation of the inverse from above, we have�
�X 0

t�1Xt�1 + x
0
txt
��1

=
1

�

�
X 0
t�1Xt�1

��1
+
c

�

�
X 0
t�1Xt�1

��1
x0txt

�
X 0
t�1Xt�1

��1
;

with
c = � 1

�+ xt
�
X 0
t�1Xt�1

��1
x0t
:

From a derivation similar to the one given above, we have that

't = 't�1 +

�
X 0
t�1Xt�1

��1
�+ xt

�
X 0
t�1Xt�1

��1
x0t
x0t
�
yt � xt't�1

�
and the updating equation is

(X 0
tXt)

�1
=

�
�X 0

t�1Xt�1 + x
0
txt
��1

=
1

�

�
X 0
t�1Xt�1

��1
+ c

1

�

�
X 0
t�1Xt�1

��1
x0txt

1

�

�
X 0
t�1Xt�1

��1
:

De�ning Pt = (X 0
tXt)

�1, we can write the model as

't = 't�1 +
Pt�1x

0
t

�+ xtPt�1x0t

�
yt � xt't�1

�
and the updating equation as

Pt =
1

�

�
I +

Pt�1xt
�+ x0tPt�1xt

x0t

�
Pt�1:

As Branch and Evans [1] and Sargent [6] point out, least squares learning
is a restricted form of the Kalman �lter where the constant Kalman "gain" is
equal to 1� �.
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4 Applying least squares learning to the Hansen
model

Consider the most simple version of the Hansen model (for a development of
this model, see McCandless [5], Chapter 6). The log-linear form of that model
is

0 = eCt � Et eCt+1 + �rEtert+1
0 = eYt � eHt

1�H
� eCt

0 = Y eYt � C eCt +K h(1� �) eKt � eKt+1

i
0 = e�t + � eKt + (1 + �) eHt � eYt
0 = eYt � eKt � ert

with a stochastic process for technology of

e�t = e�t�1 + e"t:
We assume that the expected variables Et eCt+1 and Etert+1 are found by projec-
tion from a regression model of the form�

Et eCt+1
Etert+1

�
=

�
'111 '112
'121 '122

�" eKteYt
#
;

where the coe¢ cients of the regression are determined using data up to period
t� 1. The reason we use a regress with eKt and eYt instead of using a VAR witheCt as the second independent variable is because the �rst line of the model has
both eCt and Et eCt+1 in it with coe¢ cients equal to one, so the A matrix can
become less than full rank, for example when�

'111 '112
'121 '122

�
=

�
2 q

1=�r q=�r

�
;

for any q. However, a VAR forecasting model is frequently possible and would
be preferred if multiple step-ahead forecasts are needed.
Using the recursive least squares method described above, the parameters of

the model are updated using

't = 't�1 +
Pt�1x

0
t

�+ xtPt�1x0t

�
yt � xt't�1

�
and the updating equation for Pt is

Pt =
1

�

�
I +

Pt�1x
0
t

�+ xtPt�1x0t
xt

�
Pt�1:
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In this last equation, � is the foregetting factor. � = 1 for a ordinary least
squares forecast and can take values less than one (normally between :9 and
:999) when the model includes foregetting.
We write out the Hansen model in a state space format. The variables to

be determined at date t are

xt =

266666666664

Kt+1

Ht
Yt
Ct
rt

Et eCt+1
Etert+1e�t

377777777775
:

The model is comprised of two parts. The state space version of the log-linear
model, written as

At
�
't�1

�
xt = Bt

�
't�1

�
xt�1 + C"t;

and the updating equation for the parameters of the least squares learning VAR,
which can be given as �

't
Pt

�
= G

��
't�1
Pt�1

�
; xt

�
:

The matrix A is written as At
�
't�1

�
to remind us that it has parameters in the

least squares updating equation that were found using the data up to period
t � 1. If the matrix At

�
't�1

�
is invertable, then the state space model can be

solved directly in each period as

xt =
�
At
�
't�1

���1
Bt
�
't�1

�
xt�1 +

�
At
�
't�1

���1
C"t:

The matrices At, Bt, and Ct for the above version of the Hansen economy are

At =

266666666664

0 0 0 1 0 �1 �r 0
0 � 1

1�H 1 �1 0 0 0 0

�K 0 Y �C 0 0 0 0
0 1� � �1 0 0 0 0 1
0 0 1 0 �1 0 0 0

�'111(t� 1) 0 �'112(t� 1) 0 0 1 0 0
�'121(t� 1) 0 �'122(t� 1) 0 0 0 1 0

0 0 0 0 0 0 0 1

377777777775
;
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Bt =

266666666664

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

� (1� �)K 0 0 0 0 0 0 0
�� 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 

377777777775
;

and
C =

�
0 0 0 0 0 0 0 1

�0
:

Notice how the parameters of the regression for estimating Et eCt+1 and Etert+1,
in the form,

�'111(t� 1) 0 �'112(t� 1)
�'121(t� 1) 0 �'122(t� 1)

;

are included directly matrix A of the state space version of the model.
A time path for the economy is found by solving the economy, beginning

with some initial guesses (priors) for '0 and P0 and using the data that comes
from the model to update '0 and P0 and get new values for '1 and P1. The
parameter values '1 and then put into matrix A and the model is solved again.
If � = 1, the matrix Pt becames small quite quickly and the parameter values,
't, tend to converge slowly. Nor are the parameters is very responsive to a
structural change (or policy change), since all data, new and old, are given
the same weight and, if there is substantial data over the old policy regime, it
may take a long time for the e¤ects of the new regime to be observed in the
parameters.. Running example economies, one can �nd that the convergence
is so slow as to be almost useless. For example, using the above economy with
the parameters from McCandless , Chapter 6, the rational expectations values
for ' are

' =

�
:5130 :2614
�1:007 :9662

�
:

If one starts the recursive least squares process with both ' and P equal to
2� 2 identity matrices, '111 is still not very close after 200; 000 periods. Figure
1 shows the time path of the four paramters in this simulation. At the end of
the 200; 000 periods ' is equal to

' =

�
0:6803 0:2750
�1:0058 0:9597

�
and the updating matrix P is equal to

P =

�
:00009069 �:00005938
�:00005938 :00005983

�
so each new data point has very little in�uence on the parameter values.
With forgetting, the coe¢ cients of 't do not usually converge exactly, but

are distributed over a range that contains the �xed point of the version without
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Figure 1: Parameter values over 200,000 periods: � = 1

forgetting. If � < 1, Pt stays relatively large and while 't can show substantial
variation, it tends to converge faster into a range that includes the rational
expectations values. Figure 2 shows the time path for the parameters for the
same economy as above with the same starting points but where � = :999. After
about 20,000 periods, the parameters are close to their rational expectations
values. Even at the end of the period, the updating matrix P is still relatively
large with

P =

�
0:0098 �0:0084
�0:0084 0:0102

�
;

so that new data has much more impact on updating the parameters and in the
case where � = 1.

5 Forecasting inside a linear rational expecta-
tions model

If the economy that one is studying is a linear rational expectations model, such
as the basic Hansen model, then one can use the linear policy functions found
from solving the economy to �nd a set of linear forecasting functions that use
the data generated in any period t to get the rational expectations forecast for
the values of variables in period t+ 1. A single agent or econometrician living
in this economy and producting a least squares forecast on some set of variables
will end up with this same linear equation as the result of their estimation
process. We �rst show how to �nd a linear forecasting equation given the
policy functions and then compare the one that can be calculated from the
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Figure 2: Parameter values over 200,000 periods: � = :999

policy functions for the basic Hansen model to a linear regression on the same
variables from simulations of the same Hansen model.
To see how this works, assume that we have the policy functions (plans) for

the rational expectations model. From those, we can write the policy functions
for the two variables we want to forecast in the form�

xdt
xet

�
=

�
dk d�

ek e�

� �
kt
�t

�
and the equation for updating the state variable as

kt+1 =
�
kk k�

� � kt
�t

�
:

Since there are only two state variables in the Hansen model we are considering
here, kt and �t, only two variables2 from the model are needed to get the rational
expectations forecast. Here we illustrate a case where the econometrician is
using variables d and e to forecast the variables a and b. If one were doing a
VAR, then variables a = d and b = e. We want to �nd the regression model that
an agent inside the rational expectations model would �nding for forecasting�

Etx
a
t+1

Etx
b
t+1

�
=

�
ca1 ca2

cb1 cb2

� �
xdt
xet

�
:

2This is true if the two variables are not perfectly correlated or that
�
a1 b1

a2 b2

�
is invert-

ible, which is to say the same thing.
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Since we know the policy functions, we know that the rational expectations
forecast of these variables is�

Etx
a
t+1

Etx
b
t+1

�
=

�
ak a�

bk b�

� �
kt+1
�t

�
;

where since Et"t+1 = 0, Et�t+1 = �t. The rational expectations forecasts for
Etkt+1 and Et�t+1 are �

kt+1
�t

�
=

�
kk k�

0 

� �
kt
�t

�
:

Therefore, the expectations for xat+1 and x
b
t+1 can be written in terms of the

state variables at date t as��
Etx

a
t+1

Etx
b
t+1

��
=

�
ak a�

bk b�

� �
kk k�

0 

� �
kt
�t

�

Since we have assumed that
�
dk d�

ek e�

�
is invertible, then one can write

�
kt
�t

�
=

�
dk d�

ek e�

��1 �
x1t
x2t

�
:

Using this, the regression equation can be written as�
Etx

1
t+1

Etx
2
t+1

�
=

�
ak a�

bk b�

� �
kk k�

0 

� �
dk d�

ek e�

��1 �
x1t
x2t

�
;

so that the regression equation under rational expectation should be�
c11 c12

c21 c22

�
=

�
ak a�

bk b�

� �
kk k�

0 

� �
dk d�

ek e�

��1
:

From Chapter 6, the rational expectations version of Hansen�s basic model
gives the policy functions (or plans),

P = 0:9537;

Q = 0:1132;

R =

2664
0:2045
0:5691
�0:2430
�0:7955

3775 ;

S =

2664
1:4523
0:3920
0:7067
1:4523

3775 :
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For the Hansen economy, the only variables that are expectational variables
needed are the time t + 1 consumption and interest rate. Using these as the
variables we wish to estimate and time t capital and output as the exogenous
variable, we have�
c11 c12

c21 c22

�
=

�
:5691 :3929
�:79955 1:4523

� �
:9537 :1132
0 :95

� �
:9537 :1132
:2045 1:4523

��1
;

or that �
c11 c12

c21 c22

�
=

�
0:513 0 0:261 4
�1: 007 0:966 2

�
:

We carried out simulations of 4000 periods using the basic Hansen model
with the parameters in McCandless [5], Chapter 6, and an normal error term
with a standard error of :1. After throwing away the �rst 2000 results of the
simulation to get rid of initialization problems, running a least squares regression
on the remaining 2000 observations gives the estimates of the above regression
as �

c11 c12

c21 c22

�
=

�
0:5127 0:2605
�1:0045 0:9651

�
:

The equation that we found above is the one a single individual would en-
counter if s/he were estimating a least squares forecasting model using the cap-
ital stock and output as the exogenous variables to estimate consumption and
interest rates. S/he could just as easily have estimated a VAR using one lag of
consumption and interest as the exogenous veriables in the estimation and then
use current consumption and interest rate to forecast the economy�s (rationally)
expected values for time t+ 1 consumption and interest rates.

Exercise 1 Find the coe¢ cients in the VAR model that a single agent would
�nd for forecasting consumption and interest rates using the calculations de-
scribed above. Then run simulations of the basic Hansen model for 4000 periods
and use the last 2000 observations of that data in a least squares estimation for
�nding the estimated coe¢ cients of the VAR.

A agent living in a rational expectations economy could use the data gener-
ated each period to recursively update his or her forecasting equation. Since
recursive least squares estimation techniques converge to the least squares esti-
mate generated over the same data set, the recursive forecasting model would
converge to the model found above. This is one sense in which least squares
learning can converge to rational expectations.
A point needs to be mentioned with respect to the least squares or recursive

least squares estimates generated by an agent living in a rational expections
economy. Probably the most important special characteristic of the example
given above is that it used su¢ cient exogenous variables in the estimation to
exactly cover the number of state variables in the economy. Two variables,
d and e, were used as exogenous variables to be able to exactly determine the
values of the state variables kt and �t that occurred in period t. Since the values
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of the full set of state variables could be determined, putting these values into
the appropriate policy functions could give the values of all other variables and,
especially necessary for the forecasts, the expected values of the state variables
in period t + 1. In other words, the set of exogenous variables that were used
exactly span the space of the state variables.
It is of interest to know what happens when the exogenous variables do not

span the space of state variables. This question is relevant because the number
of state variables included in any model will normally be less (and possibly much
less) than the number of state variables in the world that is being modelled. It
is not unreasonable to assume that the econometrician is normally working with
fewer exogenous variables than there are states in the world.
To be able to get the parameters that are those of the rational expectations

model, one would need to be able to solve a problem such as the following.
Suppose that we have data on three endogenous varables, vit, i = 1; 2; 3, from
an economy with four state variables, sjt , j = 1 to 4 and we want to calculate
what the VAR for these variables should look like. We want to �nd the matrix
C for the forecasting problem24 Etv

1
t+1

Etv
2
t+1

Etv
3
t+1

35 =
24 c11 c12 c13
c21 c22 c23
c31 c32 c33

3524 v1t
v2t
v3t

35 :
From the policy functions, we know that

24 v1t
v2t
v3t

35 =
24 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

35
2664
s1t
s2t
s3t
s4t

3775 ;
and that there exists a matrix for updating the state variables of the form2664

s1t
s2t
s3t
s4t

3775 =
2664
b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

3775
2664
s1t�1
s2t�1
s3t�1
s4t�1

3775 ;
so we can write24 Etv

1
t+1

Etv
2
t+1

Etv
3
t+1

35 =
24 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

35
2664
b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

3775
2664
s1t
s2t
s3t
s4t

3775 :
Unfortunately, the �nal step would involve inverting24 a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34

35
13



to be able to �nd an expression for the states,
�
s1t s2t s3t s4t

�0
, as a function

of the varables,
�
v1t v2t v3t

�0
. This inverse does not exist.

Assume that we add an error term of the form2664
v1t
v2t
v3t
"t

3775 =
2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
d1 d2 d3 d4

3775
2664
s1t
s2t
s3t
s4t

3775
so that the augmented matrix is invertible. Then we can �nd24 Etv

1
t+1

Etv
2
t+1

Etv
3
t+1

35

=

24 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

35
2664
b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

3775
2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
d1 d2 d3 d4

3775
�1 2664

v1t
v2t
v3t
"t

3775 :
De�ne24 f11 f12 f13 f14

f21 f22 f23 f24
f31 f32 f33 f34

35

=

24 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

35
2664
b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

3775
2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
d1 d2 d3 d4

3775
�1

and one gets24 Etv
1
t+1

Etv
2
t+1

Etv
3
t+1

35 =
24 f11 f12 f13
f21 f22 f23
f31 f32 f33

3524 v1t
v2t
v3t

35+
24 f14
f24
f34

35 ["t]
where the di�s are chosen so as to minimize the sum of squared errors,

�
f14 f24 f34

� 24 f14
f24
f34

35 var ("t) :
The variance of the error term, var ("t), and the vector

�
f14 f24 f34

�0
will

normally be non-zero and will depend not only on the policy matrices but also
on the variances of the state variables. In an economy of this type, the least
squares forecases will assume that the error term, "t, is zero and the least
squaresd forecasts that come from this equation will di¤er from the rational
expectations forecasts by the size of that error term times

�
f14 f24 f34

�0
.
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