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1 Introduction

The Taylor rule used in the book had two important characteristics: current
in�ation and output are the variables that the central bank used to determined
the short term interest rate and the coe¢ cients on the rule were representative
of those recommended by Taylor, a = :5 and b = :5. With these coe¢ cients
and these variables, the Taylor rule produced smaller impulse response functions
than did the �xed growth Friedman rule. A substantial literature has grown
up around the issue of what should be the appropriate dating of the variables
to be used and the coe¢ cients that will generate stable solutions. In this
literature, stability normally refers to uniqueness, that the model has a unique
stable equilibrium under this central bank rule.
One frequently hears that central banks should base their Taylor rule on fore-

casts of in�ation and output and that these forecasts should be made known to
the public. This kind of policy is called in�ation forecast targeting. The ques-
tion of stability arises because there are doubts about these equilibria. Forward
looking models can be fraught with problems related to bubbles, sunspots or
self-con�rming equilibria in cases where multiple equilibria are possible. One
is therefore interested in those cases where a model with a Taylor rule has a
unique or multiple (usually in�nite in the case of linear models) equilibria. In
particular, one wants to know the set of parameters of the Taylor rule for which
there is only one equilibrium. In this case, the problems of bubbles do not
occur.
We solve the log-linear rational expectations models using the techniques of

Uhlig. The matrix quadratic equation whose stable root gives us the laws of
motion for the state variables is solved using a generalized eigenvalue technique
(see Section 8.8 of McCandless [1]). If there are exactly the same number of
eigenvalues less than or equal to one as there are state variables, then the model
has a unique stable solution. If there are more eigenvalues less than or equal to
one, then there are more than one distinct solutions and all linear combinations
of these solutions are also solutions of the model: implying that there are an
in�nite number of non-explosive solutions.
The literature on stability of the Taylor rule looks for the set of parameters

on in�ation and output that produces a unique solution. It does this by setting
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up the linear model and solving the generalized eigenvalue problem and counting
the number of eigenvalues less than or equal to one and searching over a set of
possible Taylor rule parameters on in�ation and output for a speci�c model to
see what set with unique solutions looks like.
Here we �nd the set of parameters for the Taylor rule that give a unique

solution for the Taylor rule model given in Section 12.2 of McCandless [1] and
some variations in which the date of in�ation or output used in the rule is the
expectations for period t + 1 or historical from period t � 1. The object is
to compare the size of these sets and use that to determine what might make
a sensible, stable Taylor rule for central bank practice. Here, for each model
these sets are presented as a graph that separates the parameters that result in
a unique equilibrium from those that result in multiple equilibria.

2 The model

Since the basic model is exactly the same as in Section 12.2, we begin here
by rewriting the matrices of the model, moving the Taylor rule equation into
the expectations part so that we can compare the basic model to one where
the Taylor rule is based on rational expectations forecasts. The model where
current values are used in the Taylor rule can be written as written with the

set of state variables as xt =
h eKt+1;fMt; ePti0, the set of jump variables as

yt =
hert; ewt; eYt; eCt; eHt; eNt; ernt ; erft ; egMt i0, the stochastic variable as zt = he�t; egft i,

and the system written as

0 = Axt +Bxt�1 + Cyt +Dzt;

0 = Et [Fxt+1 +Gxt +Hxt�1 + Jyt+1 +Kyt + Lzt+1 +Mzt] ;

zt+1 = Nzt + "t+1;

where

A =

26666666666664

0 0 0
0 0 C

K M=P rnN=P �M=P
0 0 0
0 0 0
0 0 0
0 0 �1
0 0 �wH
0 1 0

37777777777775
;
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B =

2666666666666664

0 0 0

0 �M=P
gM

0

�(r + 1� �)K 0 0
�� 0 0

�(� � 1) 0 0
�� 0 0
0 0 0

0 M=P
�
1� 1

gM

�
0

0 �1 0

3777777777777775
;

C =

26666666666664

0 1 0 �1 0 0 �1 0 0

0 0 0 C 0 N=P 0 0 0

�rK �wH 0 0 �wH �rnN=P �rnN=P 0 0
0 1 0 0 � 0 0 1 0
1 0 0 0 �(1� �) 0 0 0 0
0 0 1 0 �(1� �) 0 0 0 0
0 �1 0 0 �1 1 1 �1 0

0 �wH 0 0 �wH N=P 0 0 M=P
0 0 0 0 0 0 0 0 �1

37777777777775
;

D =

266666666666664

0 0

0 �M=P
gM

0 0
�1 0
�1 0
�1 0
0 0
0 0
0 � 1

gM

377777777777775
;

F =

24 0 0 �1
0 0 0
0 0 0

35 ;
G =

24 0 0 1
0 0 0
0 0 bgM

35 ;
H =

24 0 0 0
0 0 0
0 0 �bgM

35 ;
J =

24 0 0 0 �1 0 0 0 0 0
�r �1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

35 ;
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Figure 1: Purely current Taylor rule, gM = 1:03

K =

24 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 aY 0 0 0 0 �rf 0

35 ;
L =

24 0 0
0 0
0 0

35 ;
M =

24 0 0
0 0
0 0

35 ;
and

N =

�
 0
0 �f

�
:

In this version of the model, the money growth rule is in the A;B;C;D matrices
and the Taylor rule is in the matrices from F to M .
We consider values of a and b from the set a; b 2 [�1:5; 1:5]. The unique

solution parameter space for a Taylor rule of the form

rft = a
�
Yt � Y

�
+ b (�t � �) + rf

is indicated in Figure 1. There are two separate regions where the solutions are
stable but these are very di¤erent solutions and the properties of the impulse
response functions are quite di¤erent. That happens is that as a and b become
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smaller, one of the eigenvalues that is greater than one shrinks and the eigenvalue
that strictly between one and zero grows until we reach a region where both are
less than one. As a and b continue to become smaller, the eigenvalue that was
initially stable becomes unstable and the other, now less than one, eigenvalue is
chosen for the unique equilibrium. The Taylor rule implied by the values of a
and b in the lower left hand corner of Figure 1 is quite odd, increases in output
and in�ation generate sharp reductions in the short term interest rate that the
�rms pay.
To �nd the set for the model where the Taylor rule is based on rational

expectations forecasts of in�ation and output, one modi�es matrices F through
K to be

F =

24 0 0 �1
0 0 0
0 0 bgM

35 ;
G =

24 0 0 1
0 0 0
0 0 �bgM

35 ;
H =

24 0 0 0
0 0 0
0 0 0

35 ;
J =

24 0 0 0 �1 0 0 0 0 0
�r �1 0 0 0 0 0 0 0
0 0 aY 0 0 0 0 0 0

35 ;
K =

24 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 �rf 0

35 :
The only changes are in the last row of these matrices. Compare these matrices
to the ones given above. The space of unique solutions for the version of
the Taylor rule that uses rational expectations forecasts for both in�ation and
output, where the Taylor rule is

rft = a
�
EtYt+1 � Y

�
+ b (Et�t+1 � �) + rf ;

is given in Figure 2.
The set of unique solutions is substantially smaller than that with current

variables, so much so that the coe¢ cients used in Section 12.2 of McCandless
[1], a = :5 and b = :5 is not in the set of unique solutions.
For a mixed Taylor rule, with current output and expected in�ation, the rule

can be written as

rft = a
�
Yt � Y

�
+ b (Et�t+1 � �) + rf ;

and the set with unique solutions is given in Figure 3.
Using current output in the Taylor rule substantially expands the set of

parameters that result in a unique stable solution.
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Figure 2: Purely expectational Taylor rule, gM = 1:03
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Figure 3: Taylor rule with expected in�ation and current output, gM = 1:03
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2.1 Lagged Taylor rule

A Taylor rule that uses lagged data requires a change in the set of state variables
so that the time t � 2 prices and time t � 1 output are available to calculate
past in�ation and output. To write the model with a lagged Taylor rule implies
increasing the state space to include lagged output and two period lagged prices.
For a model with lagged in�ation and output in the Taylor rule the log-linear
version of the model is

0 = ewt + ePt � Et ePt+1 � Et eCt+1;
0 = ewt � Et ewt+1 + �rEtert+1;
0 = ernt � ewt + eCt;
0 = C eCt � M=P

gM
egft � M=P

gM
fMt�1 +N=P eNt + C ePt;

0 = M=PfMt +
h
rnN=P �M=P

i ePt +K eKt+1 � wH( ewt + eHt)
�rKert � (r + 1� �)K eKt � rnN=P eNt � rnN=Pernt ;

0 = ewt + erft � e�t � � eKt + � eHt;
0 = ert � e�t � (� � 1) eKt � (1� �) eHt;
0 = eYt � e�t � � eKt � (1� �) eHt;
0 = ernt + eNt � ePt � erft � ewt � eHt;

0 = N=P eNt +M=P �1� 1

gM

� fMt�1 � wH ePt
+M=PegMt � wH ewt � wH eHt

0 = fMt �
1

gM
egft � egMt � fMt�1

0 = aY eYt�1 + bgM ePt�1 � bgM ePt�2 � rferft :
Notice that ePt�2 and eYt�1 occur in the log-linear Taylor rule the last equation.
De�ning the set of state variables as xt =

h eKt+1;fMt; ePt; ePt�1; eYti0, the set
of jump variables as yt =

hert; ewt; eCt; eHt; eNt; ernt ; erft ; egMt i0, and the stochastic
variable as zt =

he�t; egft i, the system can be written as

0 = Axt +Bxt�1 + Cyt +Dzt;

0 = Et [Fxt+1 +Gxt +Hxt�1 + Jyt+1 +Kyt + Lzt+1 +Mzt] ;

zt+1 = Nzt + "t+1;
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where

A =

266666666664

0 0 0 0 0
0 0 C 0 0

K M=P rnN=P �M=P 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 �1 0 0
0 0 �wH 0 0

377777777775
;

B =

26666666666664

0 0 0 0 0

0 �M=P
gM

0 0 0

�(r + 1� �)K 0 0 0 0
�� 0 0 0 0

�(� � 1) 0 0 0 0
�� 0 0 0 0
0 0 0 0 0

0 M=P
�
1� 1

gM

�
0 0 0

37777777777775
;

C =

266666666664

0 1 �1 0 0 �1 0 0

0 0 C 0 N=P 0 0 0

�rK �wH 0 �wH �rnN=P �rnN=P 0 0
0 1 0 � 0 0 1 0
1 0 0 �(1� �) 0 0 0 0
0 0 0 �(1� �) 0 0 0 0
0 �1 0 �1 1 1 �1 0

0 �wH 0 �wH N=P 0 0 M=P

377777777775
;

D =

266666666664

0 0

0 �M=P
gM

0 0
�1 0
�1 0
�1 0
0 0
0 0

377777777775
;

F =

266664
0 0 �1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

377775 ;
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G =

266664
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0

377775 ;

H =

266664
0 0 0 0 0
0 0 0 0 0
0 0 bgM �bgM aY
0 0 �1 0 0
0 0 �1 0 0

377775 ;

J =

266664
0 0 �1 0 0 0 0 0
�r �1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

377775 ;

K =

266664
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 �rf 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 �1

377775 ;

L =

266664
0 0
0 0
0 0
0 0
0 0

377775 ;

M =

266664
0 0
0 0
0 0
0 0
0 � 1

gM

377775 ;
and

N =

�
 0
0 �f

�
:

Notice that the parameters of the Taylor rule are in the third line of matrix H
where they fall on time t� 1 and t� 2 prices and on time t� 1 output.
The unique solution parameter space for the model with a lagged version of

the Taylor rule is given in Figure 4.
The space of unique solutions is very large, including almost all the set over

which we searched.
The results shown in Figure 4 are usually take to mean that a Taylor rule

should include a lagged in�ation component to "insure" that the model (and
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Figure 4: Purely lagged Taylor rule, gM = 1:03

possibly, the economy) has a unique solution. Figure 5 shows the space of
unique solutions for a mixed Taylor rule of the form

rft = a
�
Yt � Y

�
+ :5b (Et�t+1 � �) + :5b (�t�1 � �) + rf :

This is probably the Taylor most commonly used. Compare the set of unique
solutions to that with all forward looking given in Figure 2 or with in�ation
expectations and current output as in Figure 3.

3 Reprise

The timing of the variables used in a Taylor rule has a serious impact on the
space of parameter values that provide for a unique solution to the model. A
Taylor rule with all lagged values has the largest space and one with pure rational
expectations forecasts has the smallest. The version of the Taylor rule that is
most commonly used in practice contains a linear combination of a forecast for
in�ation and lagged in�ation, usually with lagged output. For the basic model
of monetary policy with a �nancial sector, the commonly used model has a space
of unique solutions almost as large as the purely lagged one.
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Figure 5: Set of unique solutions for Taylor rule with expected and lagged
in�ation, gM = 1:03
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