# A model of learning with idiosyncratic measurement error aka: The importance of good public information 

Prof. McCandless<br>UCEMA

November 19, 2010

## 1 Lecture on Learning paper

Idea

- Start with a very simple model (hansen's rbc model)
- have households learn about aggregate values of variables with measurement noise
- this measurement noise is idiosyncratic
- Each household estmates forecasting equations from noisy data
- Forecasting parameters are biased
- Find Stationary state with idiosyncratic noise
- find dynamic model with idiosyncratic noise
.The model (Hansen)
- Households max

$$
E_{t}^{j} \sum_{i=0}^{\infty} \beta^{i}\left(\ln c_{t+i}^{j}+A \ln \left(1-h_{t+i}^{j}\right)\right)
$$

subject to

$$
k_{t+1}^{j}=w_{t} h_{t}^{j}+\left(r_{t}+1-\delta\right) k_{t}^{j}-c_{t}^{j}+\chi_{t}^{j},
$$

- Production is competitive and the production function is Cobb-Douglas

$$
Y_{t}=\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}
$$

- factor markets result in

$$
r_{t}=\theta \frac{Y_{t}}{K_{t}}
$$

The full model

- The Hansen RBC model can be written in terms of the following five equations :

$$
\begin{aligned}
\frac{1}{\beta c_{t}^{j}} & =E_{t} \frac{r_{t+1}^{j}+1-\delta}{c_{t+1}^{j}}, \\
(1-\theta) \frac{Y_{t}}{H_{t}} & =\frac{A C_{t}}{1-H_{t}}, \\
K_{t+1}+C_{t} & =Y_{t}+(1-\delta) K_{t}, \\
Y_{t} & =\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}, \\
r_{t} & =\theta \frac{Y_{t}}{K_{t}} .
\end{aligned}
$$

Forecasting equations (1)

- Households estimate the forecasting equations

$$
c_{t+1}^{j}=\varphi_{11} k_{t+1}^{j}+\varphi_{12} y_{t}^{j}
$$

and

$$
r_{t+1}^{j}=\varphi_{21} k_{t+1}^{j}+\varphi_{22} y_{t}^{j}
$$

- estimated with the noisy data that they have
- Household $\mathbf{j}$ has the data history comprised of

$$
k_{t+1}^{j}=K_{t+1}+\varepsilon_{t}^{j, k}
$$

and

$$
y_{t}^{j}=Y_{t}+\varepsilon_{t}^{j, y} .
$$

Forecasting equations (2)

- Define

$$
X=\left[\begin{array}{cc}
k_{s}^{j} & y_{s-1}^{j}
\end{array}\right]=\left[\begin{array}{ll}
\left(K_{s}+\varepsilon_{s}^{j, k}\right) & \left(Y_{s-1}+\varepsilon_{s-1}^{j, y}\right)
\end{array}\right]
$$

- and

$$
Y=\left[\begin{array}{ll}
c_{s}^{j} & r_{s}^{j}
\end{array}\right]=\left[\begin{array}{ll}
\left(C_{s}+\varepsilon_{s}^{j, c}\right) & \left(r_{s}+\varepsilon_{s}^{j, r}\right)
\end{array}\right] .
$$

- The parameters for the forecasting model are found from

$$
\Phi=\left[\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right]
$$

- are found from

$$
\Phi=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

Forecasting equations (3)

- This equation can be written as

$$
\begin{aligned}
& \left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
= & \left(\left[\begin{array}{c}
\left(K_{s}+\varepsilon_{s}^{j, k}\right) \\
\left(Y_{s-1}+\varepsilon_{s-1}^{j, y}\right)
\end{array}\right]\left[\begin{array}{ll}
\left(K_{s}+\varepsilon_{s}^{j, k}\right) & \left.\left.\left(Y_{s-1}+\varepsilon_{s-1}^{j, y}\right)\right]\right)^{-1} \\
& \times\left[\begin{array}{c}
\left(K_{s}+\varepsilon_{s}^{j, k}\right) \\
\left(Y_{s-1}+\varepsilon_{s-1}^{j, y}\right)
\end{array}\right]\left[\begin{array}{ll}
\left(C_{s}+\varepsilon_{s}^{j, c}\right) & \left.\left(r_{s}+\varepsilon_{s}^{j, r}\right)\right]
\end{array}\right.
\end{array}\right) .\right.
\end{aligned}
$$

- Because the shocks are independent, this becomes

$$
\begin{aligned}
\Phi & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& =\left[\begin{array}{cc}
K_{s}^{2}+\sigma_{\varepsilon_{k}}^{2} & K_{s} Y_{s-1} \\
K_{s} Y_{s-1} & Y_{s-1}^{2}+\sigma_{\varepsilon_{y}}^{2}
\end{array}\right]^{-1}\left[\begin{array}{cc}
K_{s} C_{s} & K_{s} r_{s} \\
Y_{s-1} C_{s} & Y_{s-1} r_{s}
\end{array}\right]
\end{aligned}
$$

Forecasting equations (4)

- Since the $X^{\prime} X$ matrix is only $2 \times 2$, it can be inverted exactly and after a bit of substitution, along with the assumption that the variances are proportionally the same for all variables, that $\sigma_{\varepsilon_{k}}^{2}=K^{2} \sigma_{\varepsilon}^{2}$ and $\sigma_{\varepsilon_{y}}^{2}=$ $Y^{2} \sigma_{\varepsilon}^{2}$, one gets stationary state parameters for the forecasting equations of

$$
\Phi=\left[\begin{array}{cc}
\frac{\bar{C}}{} & \frac{\bar{r}}{\left(2+\sigma_{\varepsilon}^{2}\right) \bar{K}} \\
\frac{\bar{C}}{\left(2+\sigma_{\varepsilon}^{2}\right) \bar{K}} \\
\overline{\left(2+\sigma_{\varepsilon}^{2}\right) \bar{Y}} & \frac{\bar{r}}{\left(2+\sigma_{\varepsilon}^{2}\right) \bar{Y}}
\end{array}\right]
$$

Applying the forecasting equations to the model (1)

- The first equation of the model is

$$
\frac{1}{\beta c_{t}^{j}}=E_{t} \frac{r_{t+1}^{j}+1-\delta}{c_{t+1}^{j}}
$$

- Apply the equations for forecasting to get

$$
\begin{aligned}
\frac{1}{\beta c_{t}^{j}} & =E_{t} \frac{r_{t+1}^{j}+1-\delta}{c_{t+1}^{j}} \\
& =\frac{\varphi_{21} k_{t+1}^{j}+\varphi_{22} y_{t}^{j}+1-\delta}{\varphi_{11} k_{t+1}^{j}+\varphi_{12} y_{t}^{j}} \\
\frac{1}{\beta c_{t}^{j}} & =\frac{\varphi_{21}\left(K_{t+1}+\varepsilon_{t}^{j, k}\right)+\varphi_{22}\left(Y_{t}+\varepsilon_{t}^{j, y}\right)+1-\delta}{\varphi_{11}\left(K_{t+1}+\varepsilon_{t}^{j, k}\right)+\varphi_{12}\left(Y_{t}+\varepsilon_{t}^{j, y}\right)}
\end{aligned}
$$

Applying the forecasting equations to the model (2)

- Both sides of the last equation can be inverted and we get

$$
\beta c_{t}^{j}=\frac{\varphi_{11}\left(K_{t+1}+\varepsilon_{t}^{j, k}\right)+\varphi_{12}\left(Y_{t}+\varepsilon_{t}^{j, y}\right)}{\varphi_{21}\left(K_{t+1}+\varepsilon_{t}^{j, k}\right)+\varphi_{22}\left(Y_{t}+\varepsilon_{t}^{j, y}\right)+1-\delta}
$$

- aggregating the lhs is easy and gives $\beta C_{t}$
- Aggregating the rhs is quite difficult and is done by approximation

Applying the forecasting equations to the model (3)

- Taking a second order Taylor approximation of the rhs gives

$$
\begin{aligned}
\beta C_{t}= & \frac{E C_{t+1}}{E r_{t+1}+1-\delta} \\
& +\varphi_{21} \frac{\varphi_{21} E C_{t+1}-\varphi_{11}\left(E r_{t+1}+1-\delta\right)}{\left(E r_{t+1}+1-\delta\right)^{3}} \sigma_{\varepsilon_{k}}^{2} \\
& +\varphi_{22} \frac{\varphi_{22} E C_{t+1}-\varphi_{12}\left(E r_{t+1}+1-\delta\right)}{\left(E r_{t+1}+1-\delta\right)^{3}} \sigma_{\varepsilon_{y}}^{2}
\end{aligned}
$$

replacing the parameters of the forecasting equations with what they equal gives

$$
\beta \bar{C}=\frac{\frac{2}{2+\sigma_{\varepsilon}^{2}} \bar{C}}{\frac{2}{2+\sigma_{\varepsilon}^{2}} \bar{r}+1-\delta}-2 \frac{\frac{\bar{C} \bar{r}}{\left(2+\sigma_{\varepsilon}^{2}\right)^{2}}(1-\delta)}{\left(\frac{2}{2+\sigma_{\varepsilon}^{2}} \bar{r}+1-\delta\right)^{3}} \sigma_{\varepsilon}^{2}
$$

Applying the forecasting equations to the model (4)

- Cancelling out $\bar{C}$, gives

$$
\beta=\frac{\frac{2}{2+\sigma_{\varepsilon}^{2}}}{\frac{2}{2+\sigma_{\varepsilon}^{2}} \bar{r}+1-\delta}-2 \frac{\frac{\bar{r}}{\left(2+\sigma_{\varepsilon}^{2}\right)^{2}}(1-\delta)}{\left(\frac{2}{2+\sigma_{\varepsilon}^{2}} \bar{r}+1-\delta\right)^{3}} \sigma_{\varepsilon}^{2}
$$

- Notice that if $\sigma_{\varepsilon}^{2}=0$, this equation becomes the standard expression for this first order condition.

The stationary state (1)
The five equations for the stationary state are

$$
\begin{aligned}
\beta & =\frac{\frac{2}{2+\sigma_{\varepsilon}^{2}}}{\frac{2}{2+\sigma_{\varepsilon}^{2}}+1-\delta}-2 \frac{\frac{\bar{r}}{\left(2+\sigma_{\varepsilon}^{2}\right)^{2}}(1-\delta)}{\left(\frac{2}{2+\sigma_{\varepsilon}^{2}} \bar{r}+1-\delta\right)^{3}} \sigma_{\varepsilon}^{2} \\
(1-\theta) \overline{\bar{Y}} \overline{\bar{H}} & =\frac{A \bar{C}}{1-\bar{H}}, \\
\bar{C} & =\bar{Y}-\delta \bar{K}, \\
\bar{Y} & =\bar{K}^{\theta} \bar{H}^{1-\theta}, \\
\bar{r} & =\theta \frac{\bar{Y}}{\bar{K}} .
\end{aligned}
$$

.The stationary state (2)

- For the parameter values of $\beta=.99, \delta=.025, \theta=.36$, and $A=1.72$
- The stationary state values when $\sigma_{\varepsilon}^{2}=0$ are the usual

| $\bar{K}=12.6695$, |
| :---: |
| $\bar{Y}=1.2353$, |
| $\bar{C}=.9186$, |
| $\bar{H}=.3335$, |
| $\bar{r}=.0351$. |

.The stationary states with idiosyncratic measurement error

- The effects of bias in the forecasting estimations

The stationary states with idiosyncratic measurement error

- The effects of bias in the forecasting estimations
.The dynamic version of the model
- The log-linear version of the basic model is

$$
\begin{aligned}
0 & =\widetilde{c}_{t}^{j}-E_{t} \widetilde{c}_{t+1}^{j}+\beta \bar{r} E_{t} \widetilde{r}_{t+1}^{j} \\
0 & =\widetilde{Y}_{t}-\frac{\widetilde{h}_{t}^{j}}{1-\bar{H}}-\widetilde{c}_{t}^{j} \\
0 & =\bar{Y} \widetilde{Y}_{t}-\bar{C} \widetilde{C}_{t}+\bar{K}\left[(1-\delta) \widetilde{K}_{t}-\widetilde{K}_{t+1}\right] \\
0 & =\widetilde{\lambda}_{t}+\theta \widetilde{K}_{t}+(1+\theta) \widetilde{H}_{t}-\widetilde{Y}_{t} \\
0 & =\widetilde{Y}_{t}-\widetilde{K}_{t}-\widetilde{r}_{t}
\end{aligned}
$$

- and

$$
\widetilde{\lambda}_{t}=\gamma \widetilde{\lambda}_{t-1}+\widetilde{\varepsilon}_{t}^{\lambda}
$$



Figure 1: Stationary state values for $\bar{K}, \bar{Y}$, and $\bar{H}$ as a function of the measurement error


Figure 2: Stationary state values for $\bar{C}, \bar{r}, E C_{t+1}$, and $E r_{t+1}$ as function of measurement error

The dynamic version of the model

- The expectational variables, $E_{t} \widetilde{c}_{t+1}^{j}$ and $E_{t} \widetilde{r}_{t+1}^{j}$ are determined by each family using an OLS model and using $\widetilde{K}_{t+1}$ and $\widetilde{Y}_{t}$ as explanatory variables
- the equation is

$$
\left[\begin{array}{ll}
E_{t} \widetilde{C}_{t+1} & E_{t} \widetilde{r}_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
\varphi(t-1)_{11} & \varphi(t-1)_{21} \\
\varphi(t-1)_{12} & \varphi(t-1)_{22}
\end{array}\right]\left[\begin{array}{cc}
\widetilde{K}_{t+1}^{j} & \widetilde{Y}_{t}^{j}
\end{array}\right]
$$

- where the $\varphi(t-1)_{11}$ are estimated using data available up to time t-1
- The OLS estimation is

$$
\Phi=\left(\left(X^{j}\right)^{\prime} X^{j}\right)^{-1}\left(X^{j}\right)^{\prime} Y^{j}
$$

The dynamic version of the model

- Given the measurement error, a bias is introduced into the estimates
- The bias can be seen in

$$
\begin{aligned}
\Phi= & \left(\left[\begin{array}{cc}
\operatorname{var} \widetilde{K} & \operatorname{cov} \widetilde{K} \widetilde{Y} \\
\operatorname{cov} \widetilde{K} \widetilde{Y} & \operatorname{var} \widetilde{Y}
\end{array}\right]+\left[\begin{array}{cc}
\sigma_{\mu^{K}}^{2} & 0 \\
0 & \sigma_{\mu^{Y}}^{2}
\end{array}\right]\right)^{-1} \\
& \times\left[\begin{array}{cc}
\operatorname{cov} \widetilde{K} \widetilde{C} & \operatorname{cov} \widetilde{K} \widetilde{r} \\
\operatorname{cov} \widetilde{Y} \widetilde{C} & \operatorname{cov} \widetilde{Y} \widetilde{r}
\end{array}\right]
\end{aligned}
$$

.The dynamic version of the model (solving the model)

- A state space version of the model is used
- the variables are

$$
x_{t}=\left[\begin{array}{lllllllll}
\widetilde{K}_{t+1} & \widetilde{H}_{t} & \widetilde{Y}_{t} & \widetilde{C}_{t} & \widetilde{r}_{t} & E_{t} \widetilde{C}_{t+1} & E_{t} \widetilde{r}_{t+1} & \widetilde{\lambda}_{t}
\end{array}\right]
$$

- and the state space formulation of the problem is

$$
A_{t}\left(\Phi_{t-1}\right) x_{t}=B_{t}\left(\Phi_{t-1}\right) x_{t-1}+C \varepsilon_{t}
$$

- the recursive updating equation for the parameters is

$$
\left[\begin{array}{c}
\Phi_{t} \\
P_{t}
\end{array}\right]=G\left(\left[\begin{array}{c}
\Phi_{t-1} \\
P_{t-1}
\end{array}\right], x_{t}\right)
$$

The dynamic version of the model (solving the model)

- the state space model can be solved directly in each period as

$$
x_{t}=\left[A_{t}\left(\Phi_{t-1}\right)\right]^{-1} B_{t}\left(\Phi_{t-1}\right) x_{t-1}+\left[A_{t}\left(\Phi_{t-1}\right)\right]^{-1} C \varepsilon_{t} .
$$

- where

$$
A_{t}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & -1 & \beta \bar{r} & 0 \\
0 & -\frac{1}{1-\bar{H}} & 1 & -1 & 0 & 0 & 0 & 0 \\
-\bar{K} & 0 & \bar{Y} & -\bar{C} & 0 & 0 & 0 & 0 \\
0 & 1+\theta & -1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
-\varphi_{11}^{1}(t-1) & 0 & -\varphi_{12}^{1}(t-1) & 0 & 0 & 1 & 0 & 0 \\
-\varphi_{21}^{1}(t-1) & 0 & -\varphi_{22}^{1}(t-1) & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

The dynamic version of the model (solving the model)

$$
B_{t}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-(1-\delta) \bar{K} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\theta & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \gamma
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{\prime} .
$$

Finding an impulse response function

- Constant gain OLS can be very slow to converge
- the economy is run for 40,000 periods with a forgetting factor of . 99999
- then run again using the average values for $\Phi$ over the last 20,000 periods as a new starting point.
- The economy is run twice for 40,199 periods beginning with the coefficients found above ( with the forgetting factor $=1$ ).
- the same normally distributed shocks are applied to the economy
- except that in period 40,001 of the second running, an additional impulse of .1 is applied to the technology shock
- The impulse response function to a technology shock for this economy is found by subtracting the last 199 observations of the first run without forgetting from the second run.


Figure 3: Impulse-response functions

How measurement error affects the parameters

- For an example economy with a variance of measurement error of .001,
- The range of the signal to noise ratio is from 10 to . 0001

| $\tau$ | 10 | 1 | .1 | .01 | .001 | .0001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varphi_{11}$ | 0.4989 | 0.4856 | 0.4295 | 0.3258 | 0.2260 | 0.1978 |
| $\varphi_{12}$ | 0.2892 | 0.2763 | 0.2698 | 0.2053 | 0.1163 | 0.0914 |
| $\varphi_{21}$ | -1.0079 | -0.9936 | -0.8935 | -0.6341 | -0.4987 | -0.5149 |
| $\varphi_{22}$ | 0.9702 | 0.9583 | 0.8572 | 0.5134 | 0.2101 | 0.1088 |

Impulse response functions

- $\tau$ is the ratio of $\sigma_{\varepsilon^{\lambda}}^{2}$ to $\sigma_{\mu}^{2}$, shock is to technology
.Value of public information
- Reliable public information can permit returning to the rational expectations equilibrium
- Only information necessary is survey data from households
- that averages the data observed by the households
- Why

