Extra stuff for Hansens RBC model

George McCandless

UCEMA
Spring 2008

1 Additional material for the RBC model

Constructing an RBC model (log-linear version)

- Write out model
- Optimization problem of households
* First order conditions
* Budget constrains
- Optimization problem of firms
* First order conditions
* Budget constrains
- Optimization problem of other agents
* Government
* Financial intermediaries
- Aggregation conditions
- Equilibrium conditions
- Find stationary state
- Log-linearize model around stationary state
- Solve linear version for linear plans
- Analyze second moments of model

Hansen's basic model

- Robinson Crusoe maximizes the discounted utility function

$$
\max \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, l_{t}\right)
$$

- The specific utility functions

$$
u\left(c_{t}, 1-h_{t}\right)=\ln c_{t}+A \ln \left(1-h_{t}\right)
$$

with $A>0$.

- The production function is

$$
f\left(\lambda_{t}, k_{t}, h_{t}\right)=\lambda_{t} k_{t}^{\theta} h_{t}^{1-\theta}
$$

- λ_{t} is a random technology variable that follows the process

$$
\lambda_{t+1}=\gamma \lambda_{t}+\varepsilon_{t+1}
$$

for $0<\gamma<1$. ε_{t} iid, positive, bounded above, $E \varepsilon_{t}=1-\gamma$.

$$
-\Longrightarrow E \lambda_{t} \text { is } 1 \text { and } \lambda_{t+1}>0
$$

Hansen's basic model (continued)

- Capital accumulation follows the process

$$
k_{t+1}=(1-\delta) k_{t}+i_{t}
$$

- The feasibility constraint is

$$
f\left(\lambda_{t}, k_{t}, h_{t}\right) \geq c_{t}+i_{t}
$$

Log linear version of Hansen's model

- The five equations of the Hansen model are (adjusted)

$$
\begin{aligned}
1 & =\beta E_{t}\left[\frac{C_{t}}{C_{t+1}}\left(r_{t+1}+(1-\delta)\right)\right] \\
A C_{t} & =(1-\theta)\left(1-H_{t}\right) \frac{Y_{t}}{H_{t}} \\
C_{t} & =Y_{t}+(1-\delta) K_{t}-K_{t+1} \\
Y_{t} & =\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta} \\
r_{t} & =\theta \frac{Y_{t}}{K_{t}}
\end{aligned}
$$

Log-linearization (Uhlig's method)

- Define the log difference of each variable as

$$
\widetilde{X}_{t}=\ln X_{t}-\ln \bar{X}
$$

- Then the original variable is

$$
X_{t}=\bar{X} e^{\widetilde{X_{t}}}
$$

- Substitute this into each equation (here a production function)

$$
Y_{t}=\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}
$$

- becomes

$$
\bar{Y} e^{\widetilde{Y}_{t}}=e^{\widetilde{\lambda}_{t}} \bar{K}^{\theta} e^{\theta \widetilde{K}_{t}} \bar{H}^{(1-\theta)} e^{(1-\theta) \tilde{H}_{t}}
$$

Log-linearization (Uhlig's method) continued

- Because $\bar{Y}=\bar{K}^{\theta} \bar{H}^{(1-\theta)}$, this simplifies to

$$
e^{\tilde{\widetilde{Y}}_{t}}=e^{{\widetilde{{ }_{\lambda}^{t}} t}+\theta \widetilde{K}_{t}+(1-\theta) \tilde{H}_{t}}
$$

and, using the approximation $e^{\widetilde{X}_{t}} \approx 1+\widetilde{X}_{t}$, if \widetilde{X}_{t} is small, this equals

$$
1+\widetilde{Y}_{t}=1+\widetilde{\lambda}_{t}+\theta \widetilde{K}_{t}+(1-\theta) \widetilde{H}_{t}
$$

and

$$
\widetilde{Y}_{t}=\widetilde{\lambda}_{t}+\theta \widetilde{K}_{t}+(1-\theta) \widetilde{H}_{t}
$$

- Recall the direct method: we got

$$
\frac{Y_{t}}{\bar{Y}}+1 \approx \frac{\lambda_{t}}{\bar{\lambda}}+\frac{\theta K_{t}}{\bar{K}}+\frac{(1-\theta) H_{t}}{\bar{H}}
$$

- write as

$$
\frac{\bar{Y} e^{\widetilde{Y}_{t}}}{\bar{Y}}+1 \approx \frac{\bar{\lambda} e^{\widetilde{\lambda}_{t}}}{\bar{\lambda}}+\frac{\bar{K} \theta e^{\widetilde{K}_{t}}}{\bar{K}}+\frac{\bar{H}(1-\theta) e^{\widetilde{H}_{t}}}{\bar{H}}
$$

- or

$$
e^{\widetilde{\widetilde{Y}}_{t}}+1 \approx e^{\widetilde{\lambda}_{t}}+\theta e^{\widetilde{K}_{t}}+(1-\theta) e^{\widetilde{H}_{t}}
$$

- which is approximately

$$
\left(1+\widetilde{Y}_{t}\right)+1 \approx\left(1+\widetilde{\lambda}_{t}\right)+\theta\left(1+\widetilde{K}_{t}\right)+(1-\theta)\left(1+\widetilde{H}_{t}\right)
$$

- or

$$
\widetilde{Y}_{t} \approx \widetilde{\lambda}_{t}+\theta \widetilde{K}_{t}+(1-\theta) \widetilde{H}_{t}
$$

Another example

- Consider (a first order condition of the Hansen model)

$$
\begin{aligned}
& 1=\beta E_{t}\left[\frac{C_{t}}{C_{t+1}}\left(r_{t+1}+(1-\delta)\right)\right] \\
& 1=\beta E_{t}\left[\frac{\bar{C} e^{\widetilde{C}_{t}}}{\bar{C} \widetilde{C}_{t+1}} \bar{r} e^{\widetilde{r}_{t+1}}+(1-\delta) \frac{\bar{C} e^{\widetilde{C}_{t}}}{\bar{C} e^{\widetilde{C}_{t+1}}}\right] \\
&=\beta E_{t}\left[\bar{r} e^{\widetilde{C}_{t}-\widetilde{C}_{t+1}+\widetilde{r}_{t+1}}+(1-\delta) e^{\widetilde{C}_{t}-\widetilde{C}_{t+1}}\right] \\
& \approx \beta\left(\bar{r} E_{t}\left[1+\widetilde{C}_{t}-\widetilde{C}_{t+1}+\widetilde{r}_{t+1}\right]+(1-\delta)\left[1+\widetilde{C}_{t}-\widetilde{C}_{t+1}\right]\right) \\
&=E_{t}\left[1+\widetilde{C}_{t}-\widetilde{C}_{t+1}+\beta \bar{r} \widetilde{r}_{t+1}\right],
\end{aligned}
$$

or (after cancelling the 1's and cleaning up the expections)

$$
0 \approx \widetilde{C}_{t}-E_{t} \widetilde{C}_{t+1}+\beta \bar{r} E_{t} \widetilde{r}_{t+1}
$$

Another example

- The household budget constraint

$$
C_{t}=Y_{t}+(1-\delta) K_{t}-K_{t+1}
$$

- Becomes

$$
\bar{C} e^{\widetilde{C}_{t}}=\bar{Y} e^{\widetilde{Y}_{t}}+(1-\delta) \bar{K} e^{\widetilde{K}_{t}}-\bar{K} e^{\widetilde{K}_{t+1}}
$$

- and this is approximately

$$
\bar{C}\left(1+\widetilde{C}_{t}\right)=\bar{Y}\left(1+\widetilde{Y}_{t}\right)+(1-\delta) \bar{K}\left(1+\widetilde{K}_{t}\right)-\bar{K}\left(1+\widetilde{K}_{t+1}\right)
$$

- Given the stationary state, this reduces to

$$
\bar{C} \widetilde{C}_{t}=\bar{Y} \widetilde{Y}_{t}+(1-\delta) \bar{K} \widetilde{K}_{t}-\bar{K} \widetilde{K}_{t+1}
$$

Another example

- The second first order condition from the Hansen model

$$
A C_{t}=(1-\theta)\left(1-H_{t}\right) \frac{Y_{t}}{H_{t}}
$$

- Bring H_{t} over to the left hand side and expand the right hand side

$$
A C_{t} H_{t}=(1-\theta) Y_{t}-(1-\theta) H_{t} Y_{t}
$$

- Put in the log-linear expression

$$
A \overline{C H} e^{\widetilde{C}_{t}+\widetilde{H}_{t}}=(1-\theta) \bar{Y} e^{\widetilde{Y}_{t}}-(1-\theta) \overline{H Y} e^{\widetilde{H}_{t}+\tilde{Y}_{t}}
$$

- Approximate

$$
\begin{aligned}
A \overline{C H}\left(1+\widetilde{C}_{t}+\widetilde{H}_{t}\right)= & (1-\theta) \bar{Y}\left(1+\widetilde{Y}_{t}\right) \\
& -(1-\theta) \overline{H Y}\left(1+\widetilde{H}_{t}+\widetilde{Y}_{t}\right)
\end{aligned}
$$

- Using conditions from the stationary state this simplifies to

$$
A \overline{C H}\left(\widetilde{C}_{t}+\widetilde{H}_{t}\right)=(1-\theta) \bar{Y} \widetilde{Y}_{t}-(1-\theta) \overline{H Y}\left(\widetilde{H}_{t}+\widetilde{Y}_{t}\right)
$$

- Rearranging this becomes

$$
A \overline{C H} \widetilde{C}_{t}=(1-\theta) \bar{Y}(1-\bar{H}) \widetilde{Y}_{t}-\bar{H}[(1-\theta) \bar{Y}+A \bar{C}] \widetilde{H}_{t}
$$

- which can be further simplified (because $[(1-\theta) \bar{Y}+A \bar{C}] \bar{H}=(1-\theta) \bar{Y})$
to

$$
\frac{A \overline{C H}}{(1-\theta) \bar{Y}} \widetilde{C}_{t}=(1-\bar{H}) \widetilde{Y}_{t}-\widetilde{H}_{t}
$$

- and again (because $\left.\frac{A \overline{C H}}{(1-\theta) \bar{Y}}=1-\bar{H}\right)$ to

$$
\widetilde{C}_{t}=\widetilde{Y}_{t}-\frac{\widetilde{H}_{t}}{(1-\bar{H})}
$$

How to handle a problematic equation

- An equation of the form

$$
Y_{t}=\sum_{i=0}^{\infty} \beta^{i} \frac{Z_{t+i}}{1-Z_{t+i}}
$$

does not let you bring the $1-Z_{t+i}$ part over to the other side

- Need to do a number of approximations

$$
\begin{aligned}
\frac{Z_{t+i}}{1-Z_{t+i}} & =\frac{\bar{Z} e^{\tilde{Z}_{t+i}}}{1-\bar{Z} e^{\widetilde{Z}_{t+i}}} \approx \frac{\bar{Z}\left(1+\widetilde{Z}_{t+i}\right)}{1-\bar{Z}\left(1+\widetilde{Z}_{t+i}\right)} \\
& =\frac{\bar{Z}}{1-\bar{Z}} \frac{1+\widetilde{Z}_{t+i}}{\left(1-\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i}\right)}
\end{aligned}
$$

- But

$$
\left(1-\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i}\right) \approx e^{-\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i}}
$$

- So the equation can be written as

$$
\begin{aligned}
& =\frac{\bar{Z}}{1-\bar{Z}}\left(1+\widetilde{Z}_{t+i}\right) e^{\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i}} \\
& =\frac{\bar{Z}}{1-\bar{Z}}\left(1+\widetilde{Z}_{t+i}\right)\left(1+\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i}\right) \\
& =\frac{\bar{Z}}{1-\bar{Z}}\left(1+\widetilde{Z}_{t+i}+\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i}+\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i} \widetilde{Z}_{t+i}\right) \\
& =\frac{\bar{Z}}{1-\bar{Z}}\left(1+\widetilde{Z}_{t+i}+\frac{\bar{Z}}{1-\bar{Z}} \widetilde{Z}_{t+i}\right) \\
& =\frac{\bar{Z}}{1-\bar{Z}}\left(1+\frac{1}{1-\bar{Z}} \widetilde{Z}_{t+i}\right)
\end{aligned}
$$

- So

$$
\begin{aligned}
\bar{Y}\left(1+\widetilde{Y}_{t}\right) & =\frac{\bar{Z}}{1-\bar{Z}} \sum_{i=0}^{\infty} \beta\left(1+\frac{1}{1-\bar{Z}} \widetilde{Z}_{t+i}\right) \\
& =\frac{\bar{Z}}{(1-\bar{Z})(1-\beta)}+\frac{\bar{Z}}{(1-\bar{Z})^{2}} \sum_{i=0}^{\infty} \beta^{i} \widetilde{Z}_{t+i}
\end{aligned}
$$

- stationary state of $Y_{t}=\sum_{i=0}^{\infty} \beta^{i} \frac{Z_{t+i}}{1-Z_{t+i}}$ is $\bar{Y}=\frac{\bar{Z}}{(1-\bar{Z})(1-\beta)}$, so this becomes

$$
\widetilde{Y}_{t}=\frac{(1-\beta)}{(1-\bar{Z})} \sum_{i=0}^{\infty} \beta^{i} \widetilde{Z}_{t+i}
$$

