1 Solving matrix quadratic equations

Solving matrix quadratic equations

- We look for a solution to the quadratic equation,

$$
A P^{2}-B P-C=0
$$

- of the form $P=\Psi \Lambda \Psi^{-1}$
- where Λ is a matrix of eigenvalues on the diagonal of the form

$$
\Lambda=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & \vdots \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \cdots & \ddots & \lambda_{n-1} & 0 \\
0 & \cdots & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

- Ψ is a matrix with the corresponding eigenvectors.
- This way of writing P gives $P^{2}=\Psi \Lambda \Psi^{-1} \Psi \Lambda \Psi^{-1}=\Psi \Lambda^{2} \Psi^{-1}$

Solving matrix quadratic equations

- The matrices A, B, and C of $A P^{2}-B P-C=0$ are all $n \times n$.
- Construct the $2 n \times 2 n$ matrices

$$
D=\left[\begin{array}{cc}
B & C \\
I & \overrightarrow{0}
\end{array}\right]
$$

and

$$
E=\left[\begin{array}{cc}
A & \overrightarrow{0} \\
\overrightarrow{0} & I
\end{array}\right]
$$

Solving matrix quadratic equations

- Find the solution to the generalized eigenvalue problem for the matrix pair (D, E).
- The solution to this problem is a set of $2 n$ eigenvalues λ_{k} and corresponding eigenvectors x_{k}, such that

$$
D x_{k}=E x_{k} \lambda_{k}
$$

- Assume that there are at least n stable eigenvectors, those whose absolute value is less than one.
- Order the eigenvalues and their corresponding eigenvectors, so that the n stable eigenvalues come first.

Solving matrix quadratic equations

- The eigenvectors are columns, so that the matrix X is

$$
X=\left[\begin{array}{ccccc}
x_{1,1} & x_{2,1} & \cdots & \cdots & x_{2 n, 1} \\
x_{1,2} & x_{2,2} & \vdots & \vdots & x_{2 n, 2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{1,2 n} & x_{2,2 n} & \cdots & \cdots & x_{2 n, 2 n}
\end{array}\right]
$$

Solving matrix quadratic equations

$$
\begin{aligned}
& \text { Partitian } X \text { so that } \\
& X=\left[\begin{array}{ll}
X^{11} & X^{21} \\
X^{12} & X^{22}
\end{array}\right]= \\
& {\left[\begin{array}{ccc}
{\left[\begin{array}{cccc}
x_{1,1} & x_{2,1} & \cdots & x_{n, 1} \\
x_{1,2} & x_{2,2} & \cdots & x_{n, 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1, n} & x_{2, n} & \cdots & x_{n, n}
\end{array}\right]} & {\left[\begin{array}{ccc}
x_{n+1,1} & x_{n+2,1} & \cdots \\
x_{n+1,2} & x_{n+2,2} & \cdots \\
x_{2 n, 1} \\
\vdots & \vdots & \ddots \\
x_{2 n, 2} \\
x_{n+1, n} & x_{n+2, n} & \cdots \\
{\left[\begin{array}{cccc}
x_{1, n+1} & \cdots & \cdots & x_{n, n+1} \\
x_{1, n+2} & \ddots & \cdots & x_{n, n+2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1,2 n} & \cdots & \cdots & x_{n, 2 n}
\end{array}\right]}
\end{array} \quad\left[\begin{array}{cccc}
x_{n+1, n+1} & \cdots & \cdots & x_{2 n, n+1} \\
x_{n+1, n+2} & \ddots & \cdots & x_{2 n, n+2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n+1,2 n} & \cdots & \cdots & x_{2 n, 2 n}
\end{array}\right]\right.}
\end{array}\right]}
\end{aligned}
$$

- The generalized eigenvalues gives the problem in the form

$$
\left[\begin{array}{cc}
B & C \\
I & \overrightarrow{0}
\end{array}\right]\left[\begin{array}{ll}
X^{11} & X^{21} \\
X^{12} & X^{22}
\end{array}\right]=\left[\begin{array}{cc}
A & \overrightarrow{0} \\
\overrightarrow{0} & I
\end{array}\right]\left[\begin{array}{ll}
X^{11} & X^{21} \\
X^{12} & X^{22}
\end{array}\right]\left[\begin{array}{cc}
\Delta^{1} & \overrightarrow{0} \\
\overrightarrow{0} & \Delta^{2}
\end{array}\right]
$$

- Multiplying out the matrices on each side gives

$$
\left[\begin{array}{cc}
B X^{11}+C X^{12} & B X^{21}+C X^{22} \\
X^{11} & X^{21}
\end{array}\right]=\left[\begin{array}{cc}
A X^{11} \Delta^{1} & A X^{21} \Delta^{2} \\
X^{12} \Delta^{1} & X^{22} \Delta^{2}
\end{array}\right]
$$

Solving matrix quadratic equations

- Looking at corresponding partitions, we use

$$
X^{11}=X^{12} \Delta^{1}
$$

and

$$
B X^{11}+C X^{12}=A X^{11} \Delta^{1}
$$

- Substituting in $X^{12} \Delta^{1}$ for X^{11} in the second equation gives

$$
B X^{12} \Delta^{1}+C X^{12}=A X^{12} \Delta^{1} \Delta^{1},
$$

- postmultiplying both sides by $\left(X^{12}\right)^{-1}$ gives

$$
B X^{12} \Delta^{1}\left(X^{12}\right)^{-1}+C=A X^{12} \Delta^{1} \Delta^{1}\left(X^{12}\right)^{-1} .
$$

- Define $P=X^{12} \Delta^{1}\left(X^{12}\right)^{-1}$.
- Then $P^{2}=X^{12} \Delta^{1} \Delta^{1}\left(X^{12}\right)^{-1}$ and, from above,

$$
B P+C=A P^{2} .
$$

Solving matrix quadratic equations
Therefore, the solution to the matrix quadratic equation can be found by constructing the matrices D and E and finding the solution to the generalized eigenvalue problem for those matrices as the generalized eigenvector matrix X and the generalized eigenvalue matrix Δ (ordered appropriately, with the stable eigenvalues first). The matrix Δ^{1}, contains the eigenvalues and the matrix X^{12} contains the eigenvectors that we use to construct

$$
P=X^{12} \Delta^{1}\left(X^{12}\right)^{-1} .
$$

Solving matrix quadratic equations

- Summarized

- To solve: form matrices D and E
- Use Matlab program eig in the form
$[V, D]=\operatorname{eig}(A, B)$ produces a diagonal matrix D of generalized eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that $A * V=B * V * D$
- - Select the eigenvalues with absolute values less than one
- Select the corresponding eigenvectors
- Use these to make the matrix X^{11}, X^{12}, and Δ^{1}

