1 Solving matrix quadratic equations

Solving matrix quadratic equations

- We look for a solution to the quadratic equation,

\[AP^2 - BP - C = 0 \]

- of the form \(P = \Psi \Lambda \Psi^{-1} \)

- where \(\Lambda \) is a matrix of eigenvalues on the diagonal of the form

\[
\Lambda = \begin{bmatrix}
\lambda_1 & 0 & \cdots & \cdots & 0 \\
0 & \lambda_2 & 0 & \cdots & \vdots \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \cdots & \cdots & \lambda_{n-1} & 0 \\
0 & \cdots & \cdots & 0 & \lambda_n \\
\end{bmatrix}
\]

- \(\Psi \) is a matrix with the corresponding eigenvectors.

- This way of writing \(P \) gives \(P^2 = \Psi \Lambda \Psi^{-1} \Psi \Lambda \Psi^{-1} = \Psi \Lambda^2 \Psi^{-1} \)

Solving matrix quadratic equations

- The matrices \(A, B, \) and \(C \) of \(AP^2 - BP - C = 0 \) are all \(n \times n \).

- Construct the \(2n \times 2n \) matrices

\[
D = \begin{bmatrix} B & C \\ I & 0 \end{bmatrix}
\]

and

\[
E = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix}
\]

Solving matrix quadratic equations

- Find the solution to the generalized eigenvalue problem for the matrix pair \((D, E)\).

- The solution to this problem is a set of \(2n \) eigenvalues \(\lambda_k \) and corresponding eigenvectors \(x_k \), such that

\[Dx_k = Ex_k \lambda_k \]

- Assume that there are at least \(n \) stable eigenvectors, those whose absolute value is less than one.
Order the eigenvalues and their corresponding eigenvectors, so that the \(n \) stable eigenvalues come first.

Solving matrix quadratic equations

- The eigenvectors are columns, so that the matrix \(X \) is

\[
X = \begin{bmatrix}
 x_{1,1} & x_{2,1} & \cdots & x_{2n,1} \\
 x_{1,2} & x_{2,2} & \cdots & x_{2n,2} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{1,2n} & x_{2,2n} & \cdots & x_{2n,2n}
\end{bmatrix}.
\]

Solving matrix quadratic equations

Partition \(X \) so that

\[
X = \begin{bmatrix}
 X_{11} & X_{21} \\
 X_{12} & X_{22}
\end{bmatrix} =
\begin{bmatrix}
 X_{11} & X_{21} \\
 X_{12} & X_{22}
\end{bmatrix} =
\begin{bmatrix}
 x_{1,1} & x_{2,1} & \cdots & x_{n,1} \\
 x_{1,2} & x_{2,2} & \cdots & x_{n,2} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{1,n} & x_{2,n} & \cdots & x_{n,n}
\end{bmatrix}
\begin{bmatrix}
 x_{n+1,1} & x_{n+1,2} & \cdots & x_{n+2,1} \\
 x_{n+1,2} & x_{n+1,2} & \cdots & x_{n+2,2} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n+1,n+1} & x_{n+1,n} & \cdots & x_{n+2,n}
\end{bmatrix}.
\]

The generalized eigenvalues gives the problem in the form

\[
\begin{bmatrix}
 B & C \\
 I & 0
\end{bmatrix}
\begin{bmatrix}
 X_{11} & X_{21} \\
 X_{12} & X_{22}
\end{bmatrix} =
\begin{bmatrix}
 A & 0 \\
 0 & I
\end{bmatrix}
\begin{bmatrix}
 X_{11} & X_{21} \\
 X_{12} & X_{22}
\end{bmatrix}
\begin{bmatrix}
 \Delta & 0 \\
 0 & \Delta^2
\end{bmatrix}
\]

Multiplying out the matrices on each side gives

\[
\begin{bmatrix}
 BX_{11} + CX_{12} \\
 X^T_{11}
\end{bmatrix}
\begin{bmatrix}
 A X_{11} & A X_{21} \\
 X^T_{11} & X^T_{21}
\end{bmatrix} =
\begin{bmatrix}
 X^T_{11} & X^T_{21}
\end{bmatrix}
\begin{bmatrix}
 \Delta & 0 \\
 0 & \Delta^2
\end{bmatrix}
\]

Solving matrix quadratic equations

- Looking at corresponding partitions, we use

\[
X_{11} = X^T_{12} \Delta^1,
\]

and

\[
BX_{11} + CX_{12} = AX_{11} \Delta^1.
\]
Substituting in $X^{12}\Delta^1$ for X^{11} in the second equation gives

$$BX^{12}\Delta^1 + CX^{12} = AX^{12}\Delta^1\Delta^1,$$

postmultiplying both sides by $(X^{12})^{-1}$ gives

$$BX^{12}\Delta^1 (X^{12})^{-1} + C = AX^{12}\Delta^1\Delta^1 (X^{12})^{-1}.$$

Define $P = X^{12}\Delta^1 (X^{12})^{-1}$.

Then $P^2 = X^{12}\Delta^1\Delta^1 (X^{12})^{-1}$ and, from above,

$$BP + C = AP^2.$$

Solving matrix quadratic equations

Therefore, the solution to the matrix quadratic equation can be found by constructing the matrices D and E and finding the solution to the generalized eigenvalue problem for those matrices as the generalized eigenvector matrix X and the generalized eigenvalue matrix Δ (ordered appropriately, with the stable eigenvalues first). The matrix Δ^1, contains the eigenvalues and the matrix X^{12} contains the eigenvectors that we use to construct

$$P = X^{12}\Delta^1 (X^{12})^{-1}.$$

Solving matrix quadratic equations

Summarized

- To solve: form matrices D and E
- Use Matlab program eig in the form

$$[V, D] = eig(A, B)$$

produces a diagonal matrix D of generalized eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that $A \ast V = B \ast V \ast D$.

- Select the eigenvalues with absolute values less than one
- Select the corresponding eigenvectors
- Use these to make the matrix X^{11}, X^{12}, and Δ^1.