1 Cash in advance model

.Cash in advance

- Adding money to model
- Somewhat ad hoc method
- NOT micro foundations for why people hold money
- we assume that they must
- Assume that one needs money to purchase consumption good
- Carry money over from pervious period (plus some possible transfers)
- velocity is constant (one cycle per period)
- Story
- I show two ways to solve the models

Model of Cooley and Hansen

- Unit mass of identical agents
- Will assume indivisible labor (not a big deal)
- Agents will need money to make consumption purchases
- money held over from previous period
- Government can make direct lump-sum transfers or taxes of money
- Addition of money means that second welfare theorem need not hold
- individual decisions based on
* aggregate amount of money
* price level

The model

- Households' maximize

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}^{i}, h_{t}^{i}\right)
$$

- where

$$
u\left(c_{t}^{i}, h_{t}^{i}\right)=\ln c_{t}^{i}+\left[A \frac{\ln \left(1-h_{0}\right)}{h_{0}}\right] h_{t}^{i}
$$

- Production takes place with production function

$$
y_{t}=\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}
$$

- Technology follows

$$
\ln \left(\lambda_{t+1}\right)=\gamma \ln \left(\lambda_{t}\right)+\varepsilon_{t+1}
$$

.The model

- Comptetive factor markets imply that

$$
w_{t}=(1-\theta) \lambda_{t} K_{t}^{\theta} H_{t}^{-\theta}
$$

and

$$
r_{t}=\theta \lambda_{t} K_{t}^{\theta-1} H_{t}^{1-\theta}
$$

- Aggregation conditions are

$$
H_{t}=\int_{0}^{1} h_{t}^{i} d i
$$

and

$$
K_{t}=\int_{0}^{1} k_{t}^{i} d i
$$

.The model

- The households budget constraint is

$$
c_{t}^{i}+k_{t+1}^{i}+\frac{m_{t}^{i}}{p_{t}}=w_{t} h_{t}^{i}+r_{t} k_{t}^{i}+(1-\delta) k_{t}^{i}+\frac{m_{t-1}^{i}+\left(g_{t}-1\right) M_{t-1}}{p_{t}}
$$

$-\frac{m_{t}^{i}}{p_{t}}$ is the real value of money carried into the next period
$-m_{t-1}^{i}+\left(g_{t}-1\right) M_{t-1}$ is money from the previous period plus transfers (or taxes) from the government

- g_{t} is the gross growth rate of money: $M_{t}=g_{t} M_{t-1}$
- The cash-in-advance constraint is

$$
p_{t} c_{t}^{i} \leq m_{t-1}^{i}+\left(g_{t}-1\right) M_{t-1}
$$

- This is an additional constraint on consumption
- Want it to always hold (with equality)
- Need to have gross money growth greater than discount factor, β

Normalization issues

- Models are valid close to stationary states
- Need to have stable models so that they stay near SS
- Money is a problem
- Money is a stock
- An increase in the growth rate imply change of level
- No reason to return to old level
- Two methods of normalizing
- Measure all nominal variables relative to the aggregate money stock
- Measure all nominal variables in real terms (divided by price level)

Normalization issues

- Method of Cooley-Hansen
- They divide all nominal variables by money stock
- define $\widehat{p}_{t}=p_{t} / M_{t}, \widehat{m}_{t}^{i}=m_{t}^{i} / M_{t}$, and $M_{t} / M_{t}=1$
- Cash-in-advance constraint is

$$
\frac{p_{t}}{M_{t}} c_{t}^{i}=\frac{m_{t-1}^{i}+\left(g_{t}-1\right) M_{t-1}}{M_{t}}
$$

or

$$
\begin{aligned}
\widehat{p}_{t} c_{t}^{i} & =\frac{m_{t-1}^{i}+\left(g_{t}-1\right) M_{t-1}}{g_{t} M_{t-1}} \\
\widehat{p}_{t} c_{t}^{i} & =\frac{\widehat{m}_{t-1}^{i}+\left(g_{t}-1\right)}{g_{t}}
\end{aligned}
$$

- Budget constraint is

$$
c_{t}^{i}+k_{t+1}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}=w_{t} h_{t}^{i}+r_{t} k_{t}^{i}+(1-\delta) k_{t}^{i}+\frac{\widehat{m}_{t-1}^{i}+\left(g_{t}-1\right)}{g_{t} \widehat{p}_{t}}
$$

Normalization issues

- Real balance method
- Divide all nominal variables by the price level
- They usually show up in real equations in this form anyway
- A family's real balances are

$$
\overline{m / p}=\frac{m_{t}^{i}}{p_{t}}
$$

and the economy real balances are

$$
\overline{M / p}=\frac{M_{t}}{p_{t}} .
$$

- Some care needs to be taken with the lagged money variables. In a stationary state, $\bar{g}=\bar{\pi}$. In the stationary state

$$
\frac{m_{t-1}^{i}}{p_{t}}=\frac{m_{t-1}^{i}}{\pi_{t} p_{t-1}}=\frac{\overline{m / p}}{\bar{\pi}}=\frac{\overline{m / p}}{\bar{g}}
$$

Normalization issues

- Cash-in-advance constraint is

$$
\begin{gathered}
c_{t}^{i}=\frac{m_{t-1}^{i}}{P_{t}} \frac{P_{t-1}}{P_{t-1}}+\left(g_{t}-1\right) \frac{M_{t-1}}{P_{t}} \frac{P_{t-1}}{P_{t-1}} \\
c_{t}^{i}=\frac{m_{t-1}^{i}}{P_{t-1}} \frac{1}{\pi_{t}}+\left(g_{t}-1\right) \frac{M_{t-1}}{P_{t-1}} \frac{1}{\pi_{t}}
\end{gathered}
$$

- The flow budget constraint (after removing the cash in advance constraint) is

$$
k_{t+1}^{i}+\frac{m_{t}^{i}}{P_{t}}=w_{t} h_{t}^{i}+r_{t} k_{t}^{i}+(1-\delta) k_{t}^{i}
$$

- Will have variables P_{t} and M_{t} that could have a unit root
- not a real problem because they always appear together
* and they are co-integrated
- real variables of model do not have unit roots
- Go back to Cooley-Hansen's way

Full model

- Households max

$$
\max E_{0} \sum_{t=0}^{\infty}\left(\beta^{t} \ln c_{t}^{i}+\left[A \frac{\ln \left(1-h_{0}\right)}{h_{0}}\right] h_{t}^{i}\right)
$$

subject to the budget constraints

$$
\begin{gathered}
c_{t}^{i}=\frac{\widehat{m}_{t-1}^{i}+\left(g_{t}-1\right)}{g_{t} \widehat{p}_{t}} \\
c_{t}^{i}+k_{t+1}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}=\left((1-\theta) \lambda_{t} K_{t}^{\theta} H_{t}^{-\theta}\right) h_{t}^{i}+\left(\theta \lambda_{t} K_{t}^{\theta-1} H_{t}^{1-\theta}\right) k_{t}^{i} \\
\\
\\
+(1-\delta) k_{t}^{i}+\frac{\widehat{m}_{t-1}^{i}+\left(g_{t}-1\right)}{g_{t} \widehat{p}_{t}}
\end{gathered}
$$

- The law of motion for the stochastic shock

$$
\ln \lambda_{t+1}=\gamma \ln \lambda_{t}+\varepsilon_{t+1}^{\lambda}
$$

Full model

- The growth rate for money that is either a stationary state rule,

$$
g_{t}=\bar{g}
$$

or a stochastic rule

$$
\ln g_{t+1}=(1-\pi) \ln \bar{g}+\pi \ln g_{t}+\varepsilon_{t+1}^{g}
$$

- The aggregation conditions for an equilibrium are

$$
\begin{aligned}
K_{t} & =k_{t}^{i} \\
H_{t} & =h_{t}^{i} \\
C_{t} & =c_{t}^{i}
\end{aligned}
$$

and

$$
\widehat{M}_{t}=\widehat{m}_{t}^{i}=1
$$

Solving the model

- The first order conditions and constraints for households

$$
\begin{aligned}
\frac{1}{\beta} & =E_{t} \frac{w_{t}}{w_{t+1}}\left[(1-\delta)+r_{t+1}\right] \\
\frac{B \bar{g}}{w_{t} \widehat{p}_{t}} & =-\beta E_{t} \frac{1}{\widehat{p}_{t+1} c_{t+1}^{i}} \\
\widehat{p}_{t} c_{t}^{i} & =\frac{\widehat{m}_{t-1}^{i}+g_{t}-1}{g_{t}} \\
k_{t+1}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}} & =(1-\delta) k_{t}^{i}+w_{t} h_{t}^{i}+r_{t} k_{t}^{i}
\end{aligned}
$$

- Factor market conditions

$$
w_{t}=(1-\theta) \lambda_{t}\left[\frac{K_{t}}{H_{t}}\right]^{\theta} \text { and } r_{t}=\theta \lambda_{t}\left[\frac{K_{t}}{H_{t}}\right]^{\theta-1}
$$

- Equilibrium conditions

$$
C_{t}=c_{t}^{i}, \quad H_{t}=h_{t}^{i}, \quad K_{t+1}=k_{t+1}^{i}, \quad \text { and } \quad \widehat{M}_{t}=\widehat{m}_{t}^{i}=1
$$

Stationary state

- The equations for finding the stationary state

$$
\begin{aligned}
\frac{1}{\beta} & =(1-\delta)+\bar{r} \\
\frac{B}{\bar{w}} & =-\frac{\beta}{\bar{g} \bar{C}} \\
\widehat{p} \bar{C} & =1 \\
\frac{1}{\widehat{p}} & =(\bar{r}-\delta) \bar{K}+\bar{w} \bar{H} \\
\bar{w} & =(1-\theta)\left[\frac{\bar{K}}{\bar{H}}\right]^{\theta} \\
\bar{r} & =\theta\left[\frac{\bar{K}}{\bar{H}}\right]^{\theta-1}
\end{aligned}
$$

Stationary state

- Solving the equations of the stationary state give

$$
\begin{aligned}
& \bar{r}=\frac{1}{\beta}-(1-\delta) \\
& \bar{w}=(1-\theta)\left[\frac{\bar{K}}{\bar{H}}\right]^{\theta}=(1-\theta)\left[\frac{\bar{r}}{\theta}\right]^{\frac{\theta}{\theta-1}} \\
& \bar{C}=-\frac{\beta \bar{w}}{\bar{g} B} \\
& \widehat{p}=\overline{\bar{C}} \\
& \bar{K}=\frac{1}{\bar{C}} \\
& \overline{\bar{r}}-\delta \\
& \bar{Y}=\left(\frac{\bar{r}}{\theta}\right)^{\frac{1}{1-\theta}} \bar{K} \\
& \bar{Y}+\delta \bar{K}
\end{aligned}
$$

Stationary state

- Parameter values are $\beta=.99, \delta=.025, \theta=.36, A=1.72$, and $h_{0}=.583$, so $B=-2.5805$
- These give stationary state values of

variable	value in s.s.
\bar{r}	.0351
\bar{w}	2.3706
\bar{C}	$\frac{0.9095}{\bar{g}}$
\widehat{p}	$1.0995 \bar{g}$
\bar{K}	$\frac{12.544}{\bar{g}}$
\bar{H}	$\frac{0.3302}{\bar{g}}$
\bar{Y}	$\frac{1.2231}{\bar{g}}$

- Notice how the growth rate of money affects real variables
- It is also possible to calculate the welfare loss from inflation:utility $=\frac{\ln \left(\frac{0.9095}{\bar{g}}\right)-2.5805 \frac{0.3302}{\bar{g}}}{1-.99}$ $=-100 \ln g-\frac{85.208}{g}-9.486$
Solving the dynamic model: version 1
- Cooley and Hansen used linear quadratic method
- Problem: there are two economy wide variables, K_{t} and \widehat{p}_{t}
- These do not come directly from individual maximization problems
- Come from aggregation or equilibrium conditions
- Individual maximization problems do depend on these
- (we will also want to remove labor (both individual and aggregate) from model

Solving the dynamic model: version 1

- How to proceed
- eliminate consumption from optimization problem using c-i-a constraint

$$
\max E_{0} \sum_{t=0}^{\infty}\left(\beta^{t} \ln \left[\frac{\widehat{m}_{t-1}^{i}+\left(g_{t}-1\right)}{g_{t} \widehat{p}_{t}}\right]+\left[A \frac{\ln \left(1-h_{0}\right)}{h_{0}}\right] h_{t}^{i}\right)
$$

- Using remaining budget constaint

$$
k_{t+1}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}=\left((1-\theta) \lambda_{t} K_{t}^{\theta} H_{t}^{-\theta}\right) h_{t}^{i}+\left(\theta \lambda_{t} K_{t}^{\theta-1} H_{t}^{1-\theta}\right) k_{t}^{i}+(1-\delta) k_{t}^{i}
$$

and simplify to get

$$
k_{t+1}^{i}-(1-\delta) k_{t}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}=\left(\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}\right)\left[(1-\theta) \frac{h_{t}^{i}}{H_{t}}+\theta \frac{k_{t}^{i}}{K_{t}}\right]
$$

Solving the dynamic model: version 1

- Sum across households to get

$$
K_{t+1}+\frac{1}{\widehat{p}_{t}}=\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}+(1-\delta) K_{t}
$$

which can be solved for aggregate labor as

$$
H_{t}=\left[\frac{K_{t+1}-(1-\delta) K_{t}+\frac{1}{\hat{p}_{t}}}{\lambda_{t} K_{t}^{\theta}}\right]^{\frac{1}{1-\theta}}
$$

- Individual labor is then

$$
h_{t}^{i}=\frac{k_{t+1}^{i}-(1-\delta) k_{t}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}-\theta\left[K_{t+1}-(1-\delta) K_{t}+\frac{1}{\hat{p}_{t}}\right] \frac{k_{t}^{i}}{K_{t}}}{(1-\theta)\left[K_{t+1}-(1-\delta) K_{t}+\frac{1}{\widehat{p}_{t}}\right]^{-\frac{\theta}{1-\theta}}\left[\lambda_{t} K_{t}^{\theta}\right]^{\frac{1}{1-\theta}}}
$$

Solving the dynamic model: version 1

- Put all this into the objective function

$$
\begin{aligned}
& \max _{k_{t+1}^{i}, \widehat{m}_{t}^{i}} E_{0} \sum_{t=0}^{\infty}\left(\beta^{t} \ln \left[\frac{\widehat{m}_{t-1}^{i}+\left(g_{t}-1\right)}{g_{t} \widehat{p}_{t}}\right]+\left[A \frac{\ln \left(1-h_{0}\right)}{h_{0}}\right] \times\right. \\
& {\left[\frac{k_{t+1}^{i}-(1-\delta) k_{t}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}-\theta\left[K_{t+1}-(1-\delta) K_{t}+\frac{1}{\widehat{p}_{t}}\right] \frac{k_{t}^{i}}{K_{t}}}{\left.\left.(1-\theta)\left[K_{t+1}-(1-\delta) K_{t}+\frac{1}{\widehat{p}_{t}}\right]^{-\frac{\theta}{1-\theta}}\left[\lambda_{t} K_{t}^{\theta}\right]^{\frac{1}{1-\theta}}\right]\right)}\right.}
\end{aligned}
$$

subject to the budget constraints

$$
\begin{gathered}
k_{t+1}^{i}=k_{t+1}^{i} \\
\widehat{m}_{t}^{i}=\widehat{m}_{t}^{i} \\
\ln \left(\lambda_{t+1}\right)=\gamma \ln \left(\lambda_{t}\right)+\varepsilon_{t+1}^{\lambda} \\
\ln g_{t+1}=(1-\pi) \bar{g}+\pi \ln g_{t}+\varepsilon_{t+1}^{g}
\end{gathered}
$$

Solving the dynamic model: version 1

- State variables: $x_{t}^{i}=\left[\begin{array}{llllll}1 & \lambda_{t} & k_{t}^{i} & \widehat{m}_{t-1}^{i} & g_{t} & K_{t}\end{array}\right]^{\prime}$
- Control variables: $y_{t}^{i}=\left[\begin{array}{ll}k_{t+1}^{i} & \widehat{m}_{t}^{i}\end{array}\right]^{\prime}$
- Economy wide variables $Z_{t}=\left[\begin{array}{ll}K_{t+1} & \widehat{p}_{t}\end{array}\right]^{\prime}$
- Write the linear quadratic objective function as

$$
\left[\begin{array}{ccc}
x_{t}^{\prime} & y_{t}^{\prime} & Z_{t}^{\prime}
\end{array}\right] Q\left[\begin{array}{l}
x_{t} \\
y_{t} \\
Z_{t}
\end{array}\right]
$$

- Given this objective function, we want to solve a Bellmans equation of the form

$$
\left.x_{t}^{\prime} P x_{t}=\max _{y_{t}}\left[\begin{array}{lll}
x_{t}^{\prime} & y_{t}^{\prime} & Z_{t}^{\prime}
\end{array}\right] Q\left[\begin{array}{l}
x_{t} \\
y_{t} \\
Z_{t}
\end{array}\right]+\beta E_{0}\left[x_{t+1}^{\prime} P x_{t+1}\right]\right]
$$

subject to the budget constraints

$$
x_{t+1}=A x_{t}+B y_{t}+C Z_{t}+D \varepsilon_{t+1}
$$

Solving the dynamic model: version 1

- rewrite the matrix Q as

$$
Q=\left[\begin{array}{ccc}
R & W^{\prime} & X^{\prime} \\
W & T & N^{\prime} \\
X & N & S
\end{array}\right]
$$

- write

$$
\left[\begin{array}{ccc}
x_{t}^{\prime} & y_{t}^{\prime} & Z_{t}^{\prime}
\end{array}\right] Q\left[\begin{array}{l}
x_{t} \\
y_{t} \\
Z_{t}
\end{array}\right]
$$

as

$$
x_{t}^{\prime} R x_{t}+y_{t}^{\prime} T y_{t}+Z_{t}^{\prime} S Z_{t}+2 y_{t}^{\prime} W x_{t}+2 Z_{t}^{\prime} X x_{t}+2 Z_{t}^{\prime} N y_{t} .
$$

- The last part of the Bellmans equation can be written as

$$
\begin{aligned}
& \beta E_{0}\left[x_{t+1}^{\prime} P x_{t+1}\right] \\
= & \beta E_{0}\left[\left(A x_{t}+B y_{t}+C Z_{t}+D \varepsilon_{t+1}\right)^{\prime} P\left(A x_{t}+B y_{t}+C Z_{t}+D \varepsilon_{t+1}\right)\right]
\end{aligned}
$$

Solving the dynamic model: version 1

- First order condition are

$$
0=T y_{t}+W x_{t}+N^{\prime} Z_{t}+\beta\left[B^{\prime} P A x_{t}+B^{\prime} P B y_{t}+B^{\prime} P C Z_{t}\right]
$$

or

$$
\left(T+\beta B^{\prime} P B\right) y_{t}=-\left(W+\beta B^{\prime} P A\right) x_{t}-\left(N+\beta B^{\prime} P C\right) Z_{t}
$$

- When $\left(T+\beta B^{\prime} P B\right)$ is invertible, the linear policy function is

$$
\begin{aligned}
y_{t}= & -\left(T+\beta B^{\prime} P B\right)^{-1}\left(W+\beta B^{\prime} P A\right) x_{t} \\
& -\left(T+\beta B^{\prime} P B\right)^{-1}\left(N+\beta B^{\prime} P C\right) Z_{t}
\end{aligned}
$$

- which we can write as

$$
y_{t}=F_{1} x_{t}+F_{2} Z_{t}
$$

with

$$
\begin{aligned}
& F_{1}=-\left(T+\beta B^{\prime} P B\right)^{-1}\left(W+\beta B^{\prime} P A\right) \\
& F_{2}=-\left(T+\beta B^{\prime} P B\right)^{-1}\left(N+\beta B^{\prime} P C\right)
\end{aligned}
$$

Solving the dynamic model: version 1

- The value function P that we want fulfills

$$
\begin{aligned}
& x_{t}^{\prime} P x_{t} \\
= & {\left[\begin{array}{lll}
x_{t}^{\prime} & \left(F_{1} x_{t}+F_{2} Z_{t}\right)^{\prime} & Z_{t}^{\prime}
\end{array}\right] Q\left[\begin{array}{c}
x_{t} \\
F_{1} x_{t}+F_{2} Z_{t} \\
Z_{t}
\end{array}\right] } \\
& +\beta\left[\left(A+B F_{1}\right) x_{t}+\left(B F_{2}+C\right) Z_{t}\right]^{\prime} P\left[\left(A+B F_{1}\right) x_{t}+\left(B F_{2}+C\right) Z_{t}\right]
\end{aligned}
$$

- Unfortunately, the Z_{t} variables are still a problem

Solving the dynamic model: version 1

- Handling the economy wide variables
- We can aggregate (integrate over) the controls to get

$$
\int_{0}^{1} y_{t}^{i} d i=\left[\begin{array}{c}
\int_{0}^{1} k_{t+1}^{i} d i \\
\int_{0}^{1} \widehat{m}_{t}^{i} d i
\end{array}\right]=\left[\begin{array}{c}
K_{t+1} \\
1
\end{array}\right]
$$

- An aggregated version of the policy function is

$$
\int_{0}^{1} y_{t}^{i} d i=F_{1} \int_{0}^{1} x_{t}^{i} d i+F_{2} Z_{t}
$$

or

$$
\left[\begin{array}{c}
K_{t+1} \\
1
\end{array}\right]=F_{1} \int_{0}^{1} x_{t+1}^{i} d i+F_{2} Z_{t}
$$

Solving the dynamic model: version 1

- Since

$$
x_{t}^{i}=\left[\begin{array}{llllll}
1 & \lambda_{t} & k_{t}^{i} & \widehat{m}_{t-1}^{i} & g_{t} & K_{t}
\end{array}\right]^{\prime},
$$

- The integral of this vector is

$$
\widehat{x}_{t}=\int_{0}^{1} x_{t+1}^{i} d i=\left[\begin{array}{llllll}
1 & \lambda_{t} & K_{t} & 1 & g_{t} & K_{t}
\end{array}\right]
$$

- we can construct a matrix

$$
G=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- So that $\widehat{x}_{t}=G x_{t}^{i}$, for all i

Solving the dynamic model: version 1

- The aggregate version of the policy function is

$$
\left[\begin{array}{c}
K_{t+1} \\
1
\end{array}\right]=F_{1} G x_{t}^{i}+F_{2}\left[\begin{array}{c}
K_{t+1} \\
\widehat{p}_{t}
\end{array}\right]
$$

- This equation can be solved for the vector $\left[\begin{array}{c}K_{t+1} \\ \widehat{p}_{t}\end{array}\right]$ as

$$
\left[\begin{array}{c}
K_{t+1} \\
\widehat{p}_{t}
\end{array}\right]=F_{2}^{-1}\left[\begin{array}{c}
K_{t+1} \\
1
\end{array}\right]-F_{2}^{-1} F_{1} G x_{t}^{i}
$$

or as

$$
\left[\begin{array}{c}
K_{t+1} \\
\widehat{p}_{t}
\end{array}\right]=J\left[\begin{array}{c}
K_{t+1} \\
1
\end{array}\right]+H x_{t}^{i}
$$

Solving the dynamic model: version 1

- Recalling that the first element of x_{t}^{i} is always 1 , one can find a function of the form

$$
Z_{t}=F_{3} x_{t}^{i}
$$

- Here

$$
F_{3}=\left[\begin{array}{cc}
\frac{H_{11}+J_{12}}{1-J_{11}} & \frac{H_{12}}{1-J_{11}} \\
H_{21}+J_{22}+\frac{J_{21}\left(H_{11}+J_{12}\right)}{1-J_{11}} & H_{22}+\frac{J_{21} H_{12}}{1-J_{11}} \\
\frac{H_{13}}{1-J_{11}} & \frac{H_{14}}{1-J_{11}} \\
H_{23}+\frac{J_{12} H_{13}}{1-J_{11}} & H_{24}+\frac{J_{21}}{1-J_{11}} \\
\frac{H_{15}}{1-J_{11}} & \frac{H_{16}}{1-J_{11}} \\
H_{25}+\frac{J_{21} H_{15}}{1-J_{11}} & H_{26}+\frac{J_{21} H_{16}}{1-J_{11}}
\end{array}\right] .
$$

Solving the dynamic model: version 1

- Bellman equation is

$$
\begin{aligned}
& P \\
= & {\left[\begin{array}{lll}
I_{x} & F_{1}^{\prime}+F_{3}^{\prime} F_{2}^{\prime} & F_{3}^{\prime}
\end{array}\right] Q\left[\begin{array}{c}
I_{x} \\
F_{1}+F_{2} F_{3} \\
F_{3}
\end{array}\right] } \\
& +\beta\left[\left(A+B F_{1}\right)+\left(B F_{2}+C\right) F_{3}\right]^{\prime} P\left[\left(A+B F_{1}\right)+\left(B F_{2}+C\right) F_{3}\right]
\end{aligned}
$$

- To solve, choose P_{0}
- Find F_{1}^{0}, F_{2}^{0} and using these find F_{3}^{0}
- Use these along with P_{0} in the above equation to find P_{1}
- Repeat until conversion is close enough

Alternative method for solving

- Log-linearization of the model
- First order conditions
- budget constraints
- market equilibrium conditions (competitive or not)
- Aggregation and other equilibrium conditions
- Economy wide variables are not, in general, a problem
- optimization already done
- model usually in aggregate variables
.Cash in advance Model
- First order conditions

$$
\begin{aligned}
\frac{1}{\beta} & =E_{t} \frac{w_{t}}{w_{t+1}}\left[(1-\delta)+r_{t+1}\right] \\
\frac{B \bar{g}}{w_{t} \widehat{p}_{t}} & =-\beta E_{t} \frac{1}{\widehat{p}_{t+1} c_{t+1}^{i}}
\end{aligned}
$$

- the cash in advance constraint

$$
\widehat{p}_{t} c_{t}^{i}=\frac{\widehat{m}_{t-1}^{i}+g_{t}-1}{g_{t}}
$$

- the flow budget constraint

$$
k_{t+1}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}=(1-\delta) k_{t}^{i}+w_{t} h_{t}^{i}+r_{t} k_{t}^{i}
$$

Cash in advance Model

- Factor market conditions

$$
w_{t}=(1-\theta) \lambda_{t}\left[\frac{K_{t}}{H_{t}}\right]^{\theta}
$$

and

$$
r_{t}=\theta \lambda_{t}\left[\frac{K_{t}}{H_{t}}\right]^{\theta-1}
$$

- Equilibrium and aggregation conditions are

$$
\begin{aligned}
C_{t} & =c_{t}^{i} & H_{t}=h_{t}^{i} \\
K_{t+1} & =k_{t+1}^{i} & \widehat{M}_{t}=\widehat{m}_{t}^{i}=1
\end{aligned}
$$

- Stochastic processes

$$
\ln \lambda_{t+1}=\gamma \ln \lambda_{t}+\varepsilon_{t}^{\lambda}
$$

and

$$
\ln g_{t+1}=(1-\pi) \ln \bar{g}+\pi \ln g_{t}+\varepsilon_{t+1}^{g}
$$

Log-linear version of model

- The log-linear version of the first order conditions are

$$
-\widetilde{w}_{t}=\beta E_{t}\left[\bar{r}\left(\widetilde{r}_{t+1}-\widetilde{w}_{t+1}\right)-(1-\delta) \widetilde{w}_{t+1}\right]
$$

and

$$
-\frac{B}{\overline{p w}}\left[\widetilde{p}_{t}+\widetilde{w}_{t}\right]=\beta E_{t}\left[\frac{1}{\bar{g}} \widetilde{g}_{t+1}\right]
$$

having used the cash in advance constraint in the form,

$$
g_{t} \widehat{p}_{t} c_{t}^{i}=\widehat{m}_{t-1}^{i}+g_{t}-1
$$

- The flow budget constraint is

$$
\bar{k} \widetilde{k}_{t+1}+\frac{\bar{m}}{\bar{p}}\left[\widetilde{m}_{t}-\widetilde{p}_{t}\right]=\bar{w} \bar{h}\left[\widetilde{w}_{t}+\widetilde{h}_{t}\right]+\bar{r} \bar{k}\left[\widetilde{r}_{t}+\widetilde{k}_{t}\right]+(1-\delta) \widetilde{k} \widetilde{k}_{t}
$$

Log-linear version of model

- Factor market condtions are

$$
\bar{r} \widetilde{r}_{t}=\bar{K}^{\theta-1} \bar{H}^{1-\theta}\left[\widetilde{\lambda}_{t}+(\theta-1)\left[\widetilde{K}_{t}-\widetilde{H}_{t}\right]\right]
$$

and

$$
\bar{w} \widetilde{w}_{t}=\bar{K}^{\theta} \bar{H}^{-\theta}\left[\widetilde{\lambda}_{t}+\theta\left[\widetilde{K}_{t}-\widetilde{H}_{t}\right]\right]
$$

- The stochastic processes are

$$
\tilde{\lambda}_{t+1}=\gamma \tilde{\lambda}_{t}+\varepsilon_{t+1}^{\lambda}
$$

and

$$
\tilde{g}_{t+1}=\pi \widetilde{g}_{t}+\varepsilon_{t+1}^{g}
$$

.Getting rid of an annoying expectations

- One can remove the expectations from

$$
-\frac{B}{\overline{p w}}\left[\widetilde{p}_{t}+\widetilde{w}_{t}\right]=\beta E_{t}\left[\frac{1}{\bar{g}} \widetilde{g}_{t+1}\right]
$$

- by using the process for money growth,

$$
\widetilde{g}_{t+1}=\pi \widetilde{g}_{t}+\varepsilon_{t+1}^{g}
$$

- Since the expectation of the error is zero, one can eliminate the expectations operator, and get

$$
-\frac{B}{\overline{p w}}\left[\widetilde{p}_{t}+\widetilde{w}_{t}\right]=\frac{\beta \pi}{\bar{g}} \widetilde{g}_{t}
$$

.The full model

- The equations without expectations are

$$
\begin{aligned}
0 & =\bar{K} \widetilde{K}_{t+1}-\frac{1}{\bar{p}} \widetilde{p}_{t}-\bar{w} \bar{H} \widetilde{w}_{t}-\bar{w} \bar{H} \widetilde{H}_{t}-\bar{r} \bar{K} \widetilde{r}_{t}-\bar{r} \bar{K} \widetilde{K}_{t}-(1-\delta) \bar{K} \widetilde{K}_{t} \\
0 & =\widetilde{r}_{t}-\widetilde{\lambda}_{t}-(\theta-1) \widetilde{K}_{t}+(\theta-1) \widetilde{H}_{t} \\
0 & =\widetilde{w}_{t}-\widetilde{\lambda}_{t}-\theta \widetilde{K}_{t}+\theta \widetilde{H}_{t} \\
0 & =\widetilde{p}_{t}+\widetilde{w}_{t}-\pi \widetilde{g}_{t}
\end{aligned}
$$

- one equation in expectations

$$
0=\widetilde{w}_{t}+\beta \bar{r} E_{t} \widetilde{r}_{t+1}-E_{t} \widetilde{w}_{t+1}
$$

- two stochastic processes for the shocks to technology and money growth,

$$
\begin{aligned}
\tilde{\lambda}_{t+1} & =\gamma \widetilde{\lambda}_{t}+\varepsilon_{t+1}^{\lambda} \\
\widetilde{g}_{t+1} & =\pi \widetilde{g}_{t}+\varepsilon_{t+1}^{g}
\end{aligned}
$$

Solving the model

- The model can be written as

$$
\begin{aligned}
0 & =A x_{t}+B x_{t-1}+C y_{t}+D z_{t}, \\
0 & =E_{t}\left[F x_{t+1}+G x_{t}+H x_{t-1}+J y_{t+1}+K y_{t}+L z_{t+1}+M z_{t}\right] \\
z_{t+1} & =N z_{t}+\varepsilon_{t+1},
\end{aligned}
$$

where $x_{t}=\left[\widetilde{K}_{t+1}\right], y_{t}=\left[\begin{array}{c}\widetilde{r}_{t} \\ \widetilde{w}_{t} \\ \widetilde{H}_{t} \\ \widetilde{p}_{t}\end{array}\right]$, and $z_{t}=\left[\begin{array}{c}\widetilde{\lambda}_{t} \\ \widetilde{g}_{t}\end{array}\right]$,
.The matrices A to N are

$$
\begin{aligned}
& A=\left[\begin{array}{c}
\bar{K} \\
0 \\
0 \\
0
\end{array}\right] \\
& B=\left[\begin{array}{c}
-(\bar{r}+1-\delta) \bar{K} \\
(1-\theta) \\
-\theta \\
0
\end{array}\right] \\
& C=\left[\begin{array}{cccc}
-\bar{r} \bar{K} & -\bar{w} \bar{H} & -\bar{w} \bar{H} & -\frac{1}{\bar{p}} \\
1 & 0 & (\theta-1) & 0 \\
0 & 1 & \theta & 0 \\
0 & -1 & 0 & -1
\end{array}\right] \\
& D=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & \pi
\end{array}\right] \\
& F=[0] \quad G=[0] \quad H=[0] \\
& J=\left[\begin{array}{llll}
\beta \bar{r} & -1 & 0 & 0
\end{array}\right] \\
& K=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right] \\
& L=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \quad M=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& N=\left[\begin{array}{ll}
\gamma & 0 \\
0 & \pi
\end{array}\right]
\end{aligned}
$$

Solution of model

- We look for a solution of the form

$$
x_{t+1}=P x_{t}+Q z_{t}
$$

and

$$
y_{t}=R x_{t}+S z_{t}
$$

- Where

$$
\left(F-J C^{-1} A\right) P^{2}-\left(J C^{-1} B-G+K C^{-1} A\right) P-K C^{-1} B+H=0
$$

and that

$$
R=-C^{-1}(A P+B)
$$

$$
\begin{aligned}
& \operatorname{vec}(Q) \\
= & \left(N^{\prime} \otimes\left(F-J C^{-1} A\right)+I_{k} \otimes\left(F P+G+J R-K C^{-1} A\right)\right)^{-1} \\
& \times v e c\left(\left(J C^{-1} D-L\right) N+K C^{-1} D-M\right),
\end{aligned}
$$

and

$$
S=-C^{-1}(A Q+D)
$$

.The solution matrices are
-

$$
\begin{gathered}
P=[0.9418] \\
Q=\left[\begin{array}{cc}
0.1552 & 0.0271
\end{array}\right] \\
R=\left[\begin{array}{c}
-0.9450 \\
0.5316 \\
-0.4766 \\
-0.5316
\end{array}\right] \\
S=\left[\begin{array}{cc}
1.9418 & -0.0555 \\
0.4703 & 0.0312 \\
1.4715 & -0.0867 \\
-0.4703 & 0.4488
\end{array}\right]
\end{gathered}
$$

.Variances

- How adding money shocks affect variances

Variable	$\sigma_{\lambda}=.0036$ $\sigma_{g}=0$	$\sigma_{\lambda}=.0036$ $\sigma_{g}=.01$	$\sigma_{\lambda}=.0036$ $\sigma_{g}=.02$
\widetilde{Y}	0.0176	0.0176	0.0178
\widetilde{C}	0.0098	0.0119	0.0168
\widetilde{I}	0.0478	0.0496	0.0535
\widetilde{K}	0.0130	0.0129	0.0130
\widetilde{r}	0.0147	0.0147	0.0148
\widetilde{w}	0.0098	0.0098	0.0098
\widetilde{H}	0.0110	0.0110	0.0112
\widetilde{p}	0.0098	0.0109	0.0138

Correlations with output

Figure 1: Response of Cooley-Hansen model to technology shock

- More money shocks reduce correlations with output

Variable	$\sigma_{\lambda}=.0036$ $\sigma_{g}=0$	$\sigma_{\lambda}=.0036$ $\sigma_{g}=.01$	$\sigma_{\lambda}=.0036$ $\sigma_{g}=.02$
\widetilde{Y}	1.0000	1.0000	1.0000
\widetilde{C}	0.8234	0.6666	0.5094
\widetilde{I}	0.9472	0.9060	0.8030
\widetilde{K}	0.6166	0.6106	0.5966
\widetilde{r}	0.7149	0.7173	0.7161
\widetilde{w}	0.8234	0.8186	0.8045
\widetilde{H}	0.8753	0.8758	0.8715
\widetilde{p}	-0.8234	-0.7291	-0.5993

Impulse response to technology shock
Response of Hansen model (no money) to tech shock
Response of Cooley-Hansen to money growth shock
Comments

- Note that variances and impulse response functions do not depend on the level of stationary state inflation
- Look at the first row of the $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ matrices
- All elements are divided by \bar{g}
- The relative values of this equation do not change with \bar{g}
- So the dynamic model does not change with \bar{g}

Figure 2: Response of Hansen's model to technology shock

Figure 3: Response of Cooley-Hansen model to money growth shock

Seigniorage

- Alternative method of adding money to the economy
- Government consumes some goods
- Pays for these goods by issuing new money
- Budget constraint of the government is

$$
g_{t}=\widehat{g}_{t} \bar{g}=\frac{M_{t}-M_{t-1}}{p_{t}}
$$

with the stochastic process

$$
\ln \widehat{g}_{t}=\pi \ln \widehat{g}_{t-1}+\varepsilon_{t}^{g}
$$

- Money issued depends on the real purchases of the government

Seigniorage

- Normalize by money stock at date t
- Government budget constraint becomes

$$
g_{t}=\widehat{g}_{t} \bar{g}=\frac{\frac{M_{t}}{M_{t}}-\frac{M_{t-1}}{M_{t}}}{\frac{p_{t}}{M_{t}}}=\frac{1-\frac{1}{\varphi_{t}}}{\widehat{p}_{t}}
$$

- Notation: Now $\varphi_{t}=M_{t} / M_{t-1}$
- It is the gross growth rate of money (NOT g_{t})

Seigniorage

- Rest of model: household optimization problem

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}^{i}, 1-h_{t}^{i}\right),
$$

- subject to the sequence of cash in advance constraints,

$$
\widehat{p}_{t} c_{t}^{i} \leq \frac{\widehat{m}_{t-1}^{i}}{\varphi_{t}}
$$

- the sequence of family real budget constraints,

$$
k_{t+1}^{i}+\frac{\widehat{m}_{t}^{i}}{\widehat{p}_{t}}=w_{t} h_{t}^{i}+r_{t} k_{t}^{i}+(1-\delta) k_{t}^{i} .
$$

Seigniorage

- the economy wide cash in advance constraints (at equality) are

$$
p_{t} C_{t}+p_{t} g_{t}=p_{t} C_{t}+p_{t} \widehat{g}_{t} \bar{g}=M_{t}
$$

or

$$
\widehat{p}_{t} C_{t}+\widehat{p}_{t} \widehat{g}_{t} \bar{g}=1,
$$

- The cash in advance for the households is

$$
p_{t} C_{t}=M_{t-1},
$$

- dividing both sides of this equation by M_{t},

$$
\widehat{p}_{t} C_{t}=\frac{1}{\varphi_{t}}
$$

- The real budget constraint for the economy is

$$
C_{t}+K_{t+1}+\widehat{g}_{t} \bar{g}=w_{t} H_{t}+r_{t} K_{t}+(1-\delta) K_{t}
$$

Seigniorage

- Competitive factor markets imply that

$$
r_{t}=\theta \lambda_{t} K_{t}^{\theta-1} H_{t}^{1-\theta},
$$

and

$$
w_{t}=(1-\theta) \lambda_{t} K_{t}^{\theta} H_{t}^{-\theta}
$$

Seigniorage

- First order conditions are

$$
\frac{1}{w_{t}}=\beta E_{t}\left[\frac{r_{t+1}+1-\delta}{w_{t+1}}\right]
$$

- and

$$
-\frac{B}{\widehat{p}_{t} w_{t}}=\frac{\beta}{\widehat{m}_{t}} .
$$

Seigniorage: Stationary state

- From FOCs

$$
\frac{1}{\beta}=\bar{r}+(1-\delta)
$$

and

$$
-\frac{\beta \bar{w}}{B}=\frac{\widehat{m}}{\widehat{p}}
$$

- From factor market

$$
\bar{w}=(1-\theta)\left[\frac{\theta}{\frac{1}{\beta}-(1-\delta)}\right]^{\frac{\theta}{1-\theta}}
$$

- From government budgetr constraint

$$
\bar{g} \widehat{p}=1-\frac{1}{\varphi}
$$

- Some algebra gives

$$
\varphi=\frac{\beta \bar{w}}{B \bar{g}+\beta \bar{w}}
$$

Seigniorage

- Bailey curve (example economy)

Seigniorage: log-linear version

- Model is
$0=\widetilde{w}_{t}+\bar{r} \beta E_{t} \widetilde{r}_{t+1}-E_{t} \widetilde{w}_{t+1}$,
$0=-\widetilde{w}_{t}+\widetilde{p}_{t}$,
$0=\overline{p g}\left[\widetilde{p}_{t}+\widetilde{g}_{t}\right]-\frac{1}{\bar{\varphi}} \widetilde{\varphi}_{t}$,
$0=\bar{K} \widetilde{K}_{t+1}-\frac{1}{\bar{p}} \widetilde{p}_{t}-\bar{w} \bar{H}\left[\widetilde{w}_{t}+\widetilde{H}_{t}\right]-\bar{r} \bar{K}\left[\widetilde{r}_{t}+\widetilde{K}_{t}\right]-(1-\delta) \bar{K} \widetilde{K}_{t}$,
$0=\widetilde{r}_{t}-\widetilde{\lambda}_{t}-(\theta-1) \widetilde{K}_{t}-(1-\theta) \widetilde{H}_{t}$,
$0=\widetilde{w}_{t}-\widetilde{\lambda}_{t}-\theta \widetilde{K}_{t}+\theta \widetilde{H}_{t}$.
- Plus the stochastic processes for technology and government expenditures

Seigniorage: log-linear version

- Define variables as $x_{t}=\left[\widetilde{K}_{t+1}\right], y_{t}=\left[\begin{array}{c}\widetilde{r}_{t} \\ \widetilde{w}_{t} \\ \widetilde{p}_{t} \\ \widetilde{\varphi}_{t} \\ \widetilde{H}_{t}\end{array}\right]$, and $z_{t}=\left[\begin{array}{c}\widetilde{g}_{t} \\ \widetilde{\lambda}_{t}\end{array}\right]$,
- write the model as we did earlier
-

$$
\begin{aligned}
0 & =A x_{t}+B x_{t-1}+C y_{t}+D z_{t} \\
0 & =E_{t}\left[F x_{t+1}+G x_{t}+H x_{t-1}+J y_{t+1}+K y_{t}+L z_{t+1}+M z_{t}\right] \\
z_{t+1} & =N z_{t}+\varepsilon_{t+1}
\end{aligned}
$$

- Solve for

$$
x_{t+1}=P x_{t}+Q z_{t}
$$

and

$$
y_{t}=R x_{t}+S z_{t}
$$

Seigniorage: results

\bar{g}	0	.01	.1
P	$\left[\begin{array}{cc}.9697] & {[.9697]}\end{array}\right.$	$[.9697]$	
Q	$\left[\begin{array}{cc}.07580 & 0\end{array}\right]$	$\left[\begin{array}{cc}.07580 & 0\end{array}\right]$	$\left[\begin{array}{cc}.07580 & 0\end{array}\right]$
S			
	$\left[\begin{array}{cc}-0.4300 \\ 0.4781 \\ -0.4782 \\ 0 \\ -0.3282\end{array}\right]$	$\left[\begin{array}{cc}-0.4300 \\ 0.4781 \\ -0.4782 \\ -0.0053 \\ -0.3282\end{array}\right]$	$\left[\begin{array}{c}-0.4300 \\ 0.4781 \\ -0.4782 \\ -0.0591 \\ -0.3282\end{array}\right]$

