1 Linear quadratic models

Linear-quadratic methods

- Alternative way to approximate models
- Results in linear approximation of a policy function
- Approximation is done when setting up the problem
- The objective of the Bellman equation is quadratic
.The linear quadratic problem
- discounted quadratic objective function we are looking for is of the form

$$
\sum_{t=0}^{\infty} \beta^{t}\left[x_{t}^{\prime} R x_{t}+y_{t}^{\prime} S y_{t}+2 y_{t}^{\prime} W x_{t}\right]
$$

- subject to the linear budget constraints

$$
x_{t+1}=A x_{t}+B y_{t}
$$

- where
$-x_{t}$ is the $n \times 1$ vector of state variables,
- y_{t} is a $m \times 1$ vector of control variables,
$-R$ and A are $n \times n$ matrices,
$-S$ is an $m \times m$ matrix,
- and W and B are $m \times n$ matrices.

Second order Taylor approximations
Theorem 1 Suppose that f is a function with domain D in \mathbf{R}^{p} and range in \mathbf{R}, and suppose that f has continuous partial derivatives of order n in a neighborhood of every point on a line segment joining two points u, v in D. Then there exists a point \widetilde{u} on this line segment such that

$$
\begin{aligned}
f(v)= & f(u)+\frac{1}{1!} D f(u)(v-u)+\frac{1}{2!} D^{2} f(u)(v-u)^{2} \\
& +\cdots+\frac{1}{(n-1)!} D^{n-1} f(u)(v-u)^{n-1}+\frac{1}{n!} D^{n} f(\widetilde{u})(v-u)^{n}
\end{aligned}
$$

Second order Taylor approximations: example

- For the discounted utility function of the form

$$
\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, h_{t}\right)=\sum_{t=0}^{\infty} \beta^{t}\left[\ln c_{t}+A \ln \left(1-h_{t}\right)\right]
$$

- the objective function is

$$
\ln c_{t}+A \ln \left(1-h_{t}\right)
$$

- the first derivative of the objective function is the vector,

$$
\left[\begin{array}{ll}
\frac{1}{c_{t}} & -\frac{A}{1-h_{t}}
\end{array}\right]
$$

- the second derivative is the matrix,

$$
\left[\begin{array}{cc}
-\frac{1}{c_{t}^{2}} & 0 \\
0 & \frac{A}{\left(1-h_{t}\right)^{2}}
\end{array}\right] .
$$

Second order Taylor approximations: example

- Taylor expansion (round \bar{c} and \bar{h}) is

$$
\begin{aligned}
u\left(c_{t}, h_{t}\right) \approx & \ln \bar{c}+A \ln (1-\bar{h})+\left[\begin{array}{cc}
\frac{1}{\bar{c}} & -\frac{A}{1-\bar{h}}
\end{array}\right]\left[\begin{array}{c}
c_{t}-\bar{c} \\
h_{t}-\bar{h}
\end{array}\right] \\
& +\frac{1}{2}\left[\begin{array}{ll}
c_{t}-\bar{c} & h_{t}-\bar{h}
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{\bar{c}^{2}} & 0 \\
0 & \frac{A}{(1-\bar{h})^{2}}
\end{array}\right]\left[\begin{array}{l}
c_{t}-\bar{c} \\
h_{t}-\bar{h}
\end{array}\right]
\end{aligned}
$$

- How to arrange this result so that it looks like

$$
x_{t}^{\prime} R x_{t}+y_{t}^{\prime} S y_{t}+2 y_{t}^{\prime} W x_{t}
$$

Method of Kydland and Prescott (General version)

- A general version is to maximize

$$
\sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}, y_{t}\right)
$$

- subject to the linear budget constraint

$$
x_{t+1}=G\left(x_{t}, y_{t}\right)=A x_{t}+B y_{t}
$$

- where x_{t} are the period t state variables and y_{t} are the period t control variables.
- The second order Taylor expansion of the function $F\left(x_{t}, y_{t}\right)$ is

$$
\begin{aligned}
F\left(x_{t}, y_{t}\right) \approx & F(\bar{x}, \bar{y})+\left[\begin{array}{ll}
F_{x}(\bar{x}, \bar{y}) & F_{y}(\bar{x}, \bar{y})
\end{array}\right]\left[\begin{array}{l}
x_{t}-\bar{x} \\
y_{t}-\bar{y}
\end{array}\right] \\
& +\left[\begin{array}{ll}
x_{t}-\bar{x} & y_{t}-\bar{y}
\end{array}\right]\left[\begin{array}{ll}
\frac{F_{x x}(\bar{x}, \bar{y})}{2} & \frac{F_{x y}(\bar{x}, \bar{y})}{2} \\
\frac{F_{y x}(\bar{x}, \bar{y})}{2} & \frac{F_{y y}(\bar{x}, \bar{y})}{2}
\end{array}\right]\left[\begin{array}{l}
x_{t}-\bar{x} \\
y_{t}-\bar{y}
\end{array}\right]
\end{aligned}
$$

Method of Kydland and Prescott (General version)

- define a vector z_{t}

$$
z_{t}=\left[\begin{array}{c}
1 \\
x_{t} \\
y_{t}
\end{array}\right]
$$

- its value in the stationary state

$$
\bar{z}=\left[\begin{array}{l}
1 \\
\bar{x} \\
\bar{y}
\end{array}\right]
$$

- vector x_{t} is of length k
- the vector y_{t} of length l,
- the vector z_{t} is of length $1+k+l$

Method of Kydland and Prescott (General version)

- Consider the $(1+k+l) \times(1+k+l)$ matrix

$$
M=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right]
$$

- The matrix m_{11} is $1 \times 1, m_{22}$ is $k \times k, m_{33}$ is $l \times l$, and the rest of the matrices conform to make M square.
- The product

$$
\begin{aligned}
z_{t}^{\prime} M z_{t}= & m_{11}+\left(m_{12}+m_{21}^{\prime}\right) x_{t}+\left(m_{13}+m_{31}^{\prime}\right) y_{t} \\
& +x_{t}^{\prime} m_{22} x_{t}+x_{t}^{\prime}\left(m_{23}+m_{32}^{\prime}\right) y_{t}+y_{t}^{\prime} m_{33} y_{t}
\end{aligned}
$$

Method of Kydland and Prescott (General version)

- Put all the constant components of the Taylor expansion into

$$
\begin{aligned}
m_{11}= & F(\bar{x}, \bar{y})-F_{x}(\bar{x}, \bar{y}) \bar{x}-F_{y}(\bar{x}, \bar{y}) \bar{y} \\
& +\frac{F_{x x}(\bar{x}, \bar{y}) \bar{x}^{2}}{2}+F_{x y}(\bar{x}, \bar{y}) \overline{x y}+\frac{F_{y y}(\bar{x}, \bar{y}) \bar{y}^{2}}{2}
\end{aligned}
$$

- Define

$$
m_{12}=m_{21}^{\prime}=\frac{F_{x}(\bar{x}, \bar{y})-\bar{x} F_{x x}(\bar{x}, \bar{y})-\bar{y} F_{x y}(\bar{x}, \bar{y})}{2}
$$

and

$$
m_{13}=m_{31}^{\prime}=\frac{F_{y}(\bar{x}, \bar{y})-\bar{x} F_{x y}(\bar{x}, \bar{y})-\bar{y} F_{y y}(\bar{x}, \bar{y})}{2}
$$

- These last two equations include all the linear components of the Taylor expansion in M and M a symmetric matrix

Method of Kydland and Prescott (General version)

- The quadratic components of the Taylor expansion are found in

$$
\begin{gathered}
m_{22}=\frac{F_{x x}(\bar{x}, \bar{y})}{2} \\
m_{23}=m_{32}^{\prime}=\frac{F_{x y}(\bar{x}, \bar{y})}{2}
\end{gathered}
$$

and

$$
m_{33}=\frac{F_{y y}(\bar{x}, \bar{y})}{2}
$$

- The quadratic discounted dynamic programming problem to be solved is

$$
\sum_{t=0}^{\infty} \beta^{t} z_{t}^{\prime} M z_{t}
$$

with $z_{t}^{\prime}=\left[\begin{array}{lll}1 & x_{t} & y_{t}\end{array}\right]$, subject to the budget constraints

$$
x_{t+1}=A x_{t}+B y_{t}
$$

Method of Kydland and Prescott (Hansens model)

- A specific example of the problem to be solved is

$$
\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, h_{t}\right)
$$

subject to the budget constraint

$$
c_{t}=f\left(k_{t}, h_{t}\right)+(1-\delta) k_{t}-k_{t+1}
$$

- This budget constraint is not linear, rewrite problem as

$$
\max \sum_{t=0}^{\infty} \beta^{t} u\left(f\left(k_{t}, h_{t}\right)+(1-\delta) k_{t}-k_{t+1}, h_{t}\right)
$$

subject to the linear budget constraint

$$
k_{t+1}=k_{t+1}
$$

- The controls are k_{t+1} and h_{t}

Method of Kydland and Prescott (Hansens model)

- The exact problem is

$$
\max \sum_{t=0}^{\infty} \beta^{t}\left[\ln \left(k_{t}^{\theta} h_{t}^{1-\theta}+(1-\delta) k_{t}-k_{t+1}\right)+A \ln \left(1-h_{t}\right)\right]
$$

subject to the linear budget constraint: $k_{t+1}=k_{t+1}$

- The quadratic Taylor expansion of the objective function is

$$
\begin{aligned}
u(\cdot) \approx & \ln (f(\bar{k}, \bar{h})-\delta \bar{k})+A \ln (1-\bar{h}) \\
& +\frac{1}{\bar{c}}\left[\theta \frac{\bar{y}}{\bar{k}}+(1-\delta)\right]\left(k_{t}-\bar{k}\right)-\frac{1}{\bar{c}}\left(k_{t+1}-\bar{k}\right) \\
& +\left[(1-\theta) \frac{1}{\bar{c}} \overline{\bar{h}}-\frac{A}{1-\bar{h}}\right]\left(h_{t}-\bar{h}\right) \\
& +\left[\begin{array}{c}
\left(k_{t}-\bar{k}\right) \\
\left(k_{t+1}-\bar{k}\right) \\
\left(h_{t}-\bar{h}\right)
\end{array}\right]^{\prime}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
\left(k_{t}-\bar{k}\right) \\
\left(k_{t+1}-\bar{k}\right) \\
\left(h_{t}-\bar{h}\right)
\end{array}\right]
\end{aligned}
$$

Method of Kydland and Prescott (Hansens model)

- where

$$
\begin{gathered}
a_{11}=-\frac{1}{2 \bar{c}^{2}}\left[\theta \frac{\bar{y}}{\bar{k}}+(1-\delta)\right]^{2}-\frac{1}{2 \bar{c}} \theta(1-\theta) \frac{\bar{y}}{\bar{k}^{2}} \\
a_{12}=a_{21}=\frac{1}{2 \bar{c}^{2}}\left[\theta \frac{\bar{y}}{\bar{k}}+(1-\delta)\right] \\
a_{13}=a_{31}=-\frac{1}{2 \bar{c}^{2}}\left[\theta \frac{\bar{y}}{\bar{k}}+(1-\delta)\right](1-\theta) \frac{\bar{y}}{\bar{h}}+\frac{1}{2 \bar{c}} \theta(1-\theta) \frac{\bar{y}}{\overline{k h}} \\
a_{22}=-\frac{1}{2 \bar{c}^{2}} \\
a_{23}=a_{32}=\frac{1}{2 \bar{c}^{2}}(1-\theta) \frac{\bar{y}}{\bar{h}}
\end{gathered}
$$

and

$$
a_{33}=-\frac{1}{2 \bar{c}^{2}}\left[(1-\theta) \frac{\bar{y}}{\bar{h}}\right]^{2}-\frac{1}{2 \bar{c}} \theta(1-\theta) \frac{\bar{y}}{\bar{h}^{2}}-\frac{A}{2(1-\bar{h})^{2}}
$$

Method of Kydland and Prescott (Hansens model)

- Define the four element vector $z_{t}=\left[\begin{array}{llll}1 & k_{t} & k_{t+1} & h_{t}\end{array}\right]^{\prime}$.
- The 4×4 matrix M is

$$
M=\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & a_{11} & a_{12} & a_{13} \\
m_{31} & a_{21} & a_{22} & a_{23} \\
m_{41} & a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- m_{11} contains all the constants,

$$
\begin{aligned}
m_{11}= & \ln (f(\bar{k}, \bar{h})-\delta \bar{k})+A \ln (1-\bar{h}) \\
& -\frac{1}{\bar{c}}\left[\theta \frac{\bar{y}}{\bar{k}}+(1-\delta)-1\right] \bar{k}-\left[(1-\theta) \frac{1}{\bar{c}} \frac{\bar{y}}{\bar{h}}-\frac{A}{1-\bar{h}}\right] \bar{h} \\
& +\left[\begin{array}{c}
\bar{k} \\
\bar{k} \\
\bar{h}
\end{array}\right]^{\prime}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
\bar{k} \\
\bar{k} \\
\bar{h}
\end{array}\right],
\end{aligned}
$$

Method of Kydland and Prescott (Hansens model)

- All the linear parts are in

$$
\begin{aligned}
m_{12}=m_{21} & =\frac{1}{\bar{c}}\left[\theta \frac{\bar{y}}{\bar{k}}+(1-\delta)\right]-\left[\begin{array}{ccc}
\bar{k} & \bar{k} & \bar{h}
\end{array}\right]\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right] \\
m_{13} & =m_{31}=-\frac{1}{\bar{c}}-\left[\begin{array}{lll}
\bar{k} & \bar{k} & \bar{h}
\end{array}\right]\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]
\end{aligned}
$$

and

$$
m_{14}=m_{41}=\left[(1-\theta) \frac{1}{\bar{c}} \frac{\bar{y}}{\bar{h}}-\frac{A}{1-\bar{h}}\right]-\left[\begin{array}{ccc}
\bar{k} & \bar{k} & \bar{h}
\end{array}\right]\left[\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]
$$

Method of Kydland and Prescott (Hansens model)

- The model can now be written as

$$
\sum_{t=0}^{\infty} \beta^{t} z_{t}^{\prime} M z_{t}
$$

- subject to the budget constraint

$$
\left[\begin{array}{c}
1 \\
k_{t+1}
\end{array}\right]=A\left[\begin{array}{c}
1 \\
k_{t}
\end{array}\right]+B\left[\begin{array}{c}
k_{t+1} \\
h_{t}
\end{array}\right]
$$

- where here, $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

Solving the Quadratic Bellman equation

- Use $z_{t} \equiv\left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right]$. let the first element of x_{t} be the constant 1 .
- one wants to maximize

$$
\sum_{t=0}^{\infty} \beta^{t} z_{t}^{\prime} M z_{t}
$$

subject to the linear budget constraint,

$$
x_{t+1}=A x_{t}+B y_{t}
$$

- The objective function is of the form

$$
z_{t}^{\prime} M z_{t}=\left[\begin{array}{cc}
x_{t}^{\prime} & y_{t}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
R & W^{\prime} \\
W & Q
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]
$$

where x_{t} is a $1 \times n$ vector, y_{t} is a $1 \times m$ vector, z_{t} is therefore a $1 \times(n+m)$ vector. The matrix R is $n \times n, Q$ is $m \times m$, and W is $m \times n$.

Solving the Quadratic Bellman equation

- Since $x_{t}^{\prime} W^{\prime} y_{t}=y_{t}^{\prime} W x_{t}$, this objective function can be written as

$$
x_{t}^{\prime} R x_{t}+y_{t}^{\prime} Q y_{t}+2 y_{t}^{\prime} W x_{t}
$$

- Based on this objective function, we look for a value function matrix P such that

$$
x_{t}^{\prime} P x_{t}=\max _{y_{t}}\left[z_{t}^{\prime} M z_{t}+\beta x_{t+1}^{\prime} P x_{t+1}\right]
$$

subject to the linear budget constraints

$$
x_{t+1}=A x_{t}+B y_{t}
$$

- This Bellman equation can be written as

$$
x_{t}^{\prime} P x_{t}=\max _{y_{t}}\left[x_{t}^{\prime} R x_{t}+y_{t}^{\prime} Q y_{t}+2 y_{t}^{\prime} W x_{t}+\beta\left(A x_{t}+B y_{t}\right)^{\prime} P\left(A x_{t}+B y_{t}\right)\right]
$$

Solving the Quadratic Bellman equation

- The first order conditions from the maximization problem are

$$
\left[Q+\beta B^{\prime} P B\right] y_{t}=-\left[W+\beta B^{\prime} P A\right] x_{t}
$$

which gives the policy function (matrix), F,

$$
y_{t}=F x_{t}=-\left[Q+\beta B^{\prime} P B\right]^{-1}\left[W+\beta B^{\prime} P A\right] x_{t}
$$

- P is still undefined.
- Substitute this policy function into the Bellman equation in place of y_{t} and get the equation

$$
P=R+\beta A^{\prime} P A-\left(\beta A^{\prime} P B+W^{\prime}\right)\left[Q+\beta B^{\prime} P B\right]^{-1}\left(\beta B^{\prime} P A+W\right)
$$

- P can be found, given some initial P_{0}, as the limit from iterating on the matrix Ricotti equation

$$
P_{j+1}=R+\beta A^{\prime} P_{j} A-\left(\beta A^{\prime} P_{j} B+W^{\prime}\right)\left[Q+\beta B^{\prime} P_{j} B\right]^{-1}\left(\beta B^{\prime} P_{j} A+W\right)
$$

Matrix derivatives

- The rules for taking matrix derivatives are

$$
\begin{aligned}
& \frac{\partial x^{\prime} A x}{\partial x}=\left(A+A^{\prime}\right) x \\
& \frac{\partial y^{\prime} B x}{\partial y}=B x \\
& \frac{\partial y^{\prime} B x}{\partial x}=B^{\prime} y
\end{aligned}
$$

Finding the value matrix for Hansen's basic model

- The first step is to choose the parameter values
- From previous models, these are $\beta=.99, \delta=.025, \theta=.36$, and $A=1.72$.
- The stationary state values are $\bar{h}=.3335, \bar{k}=12.6695, \bar{y}=1.2353$, and $\bar{c}=.9186$
- The resulting a matrix is

$$
a=\left[\begin{array}{ccc}
-0.6056 & 0.5986 & -1.3823 \\
0.5986 & -0.5926 & 1.4048 \\
-1.3823 & 1.4048 & -6.6590
\end{array}\right]
$$

- M is

$$
M=\left[\begin{array}{cccc}
-1.6374 & 1.0996 & -1.0886 & 1.9361 \\
1.0996 & -0.6056 & 0.5986 & -1.3823 \\
-1.0886 & 0.5986 & -0.5926 & 1.4048 \\
1.9361 & -1.3823 & 1.4048 & -6.6590
\end{array}\right]
$$

Partitioning the M matrix

- $M=\left[\begin{array}{cc}R & W^{\prime} \\ W & Q\end{array}\right]$, so using earlier M matrix gives

$$
\begin{aligned}
R & =\left[\begin{array}{cc}
-1.6374 & 1.0996 \\
1.0996 & -0.6056
\end{array}\right] \\
Q & =\left[\begin{array}{cc}
-0.5926 & 1.4048 \\
1.4048 & -6.6590
\end{array}\right] \\
W & =\left[\begin{array}{cc}
-1.0886 & 0.5986 \\
1.9361 & -1.3823
\end{array}\right]
\end{aligned}
$$

Finding the value function

- The initial P_{0} is

$$
P_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Use the matrix Ricotti equation and get

$$
\begin{aligned}
P_{1} & =\left[\begin{array}{cc}
-.7515 & .9987 \\
.9987 & -0.4545
\end{array}\right] \\
P_{2} & =\left[\begin{array}{cc}
-1.6909 & .8247 \\
.8247 & -0.1924
\end{array}\right]
\end{aligned}
$$

Results for Hansen's economy

- After 200 iterations

$$
P=\left[\begin{array}{cc}
-96.3615 & .8779 \\
.8779 & -0.0259
\end{array}\right]
$$

- The matrix policy function is

$$
F=\left[\begin{array}{cc}
0.5869 & 0.9537 \\
0.4146 & -0.0064
\end{array}\right]
$$

Results for Hansen's economy in a stationary state

- Checking results in a stationary state

$$
x=\left[\begin{array}{c}
1 \\
12.6695
\end{array}\right]
$$

- Applying F gives

$$
y=F * x=\left[\begin{array}{cc}
0.5869 & 0.9537 \\
0.4146 & -0.0064
\end{array}\right]\left[\begin{array}{c}
1 \\
12.6695
\end{array}\right]=\left[\begin{array}{c}
12.6698 \\
0.3335
\end{array}\right]
$$

- To find the x_{t+1} want

$$
\begin{aligned}
x_{t+1} & =A x+B y=A x+B F x \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0.5869 & 0.9537 \\
0.4146 & -0.0064
\end{array}\right] x \\
& =\left[\begin{array}{c}
1 \\
12.6698
\end{array}\right]
\end{aligned}
$$

Adding stochastic shocks

- Add stochastic shocks through the budget constraints

$$
x_{t+1}=A x_{t}+B y_{t}+C \varepsilon_{t+1}
$$

where ε_{t} is an independent and identically distributed random variable with $E_{t}\left(\varepsilon_{t+1}\right)=\overrightarrow{0}$, a finite, diagonal variance matrix, Σ, and C a matrix that is $m \times n$ where m is the number of state variables and n is the length of the vector of shocks, ε_{t+1}.

Adding stochastic shocks

- Proceed as before, looking for solution to

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t} z_{t}^{\prime} M z_{t},
$$

subject to the linear budget constraints

$$
x_{t+1}=A x_{t}+B y_{t}+C \varepsilon_{t+1}
$$

- Look for value function of the form

$$
x_{t}^{\prime} P x_{t}+c=\max _{\left\{y_{s}\right\}_{s=t}^{\infty}} E_{0} \sum_{s=t}^{\infty} \beta^{s-t} z_{s}^{\prime} M z_{s}
$$

- The constant is possible because of the expectations operator

Adding stochastic shocks

- The Bellman equation is

$$
x_{t}^{\prime} P x_{t}+c=\max _{y_{t}}\left\{z_{t}^{\prime} M z_{t}+\beta E_{0}\left[x_{t+1}^{\prime} P x_{t+1}+c\right]\right\},
$$

subject to

$$
x_{t+1}=A x_{t}+B y_{t}+C \varepsilon_{t+1}
$$

- This can be written as

$$
\begin{aligned}
x_{t}^{\prime} P x_{t}+c= & \max _{y_{t}}\left[z_{t}^{\prime} M z_{t}+\beta x_{t}^{\prime} A^{\prime} P A x_{t}+\beta y_{t}^{\prime} B^{\prime} P B y_{t}\right. \\
& \left.+\beta E_{0}\left[\varepsilon_{t+1}^{\prime} C^{\prime} P C \varepsilon_{t+1}\right]+\beta c\right] .
\end{aligned}
$$

Adding stochastic shocks

- Define $G=\left[g_{j k}\right]=C^{\prime} P C$
- then

$$
E_{t}\left[\varepsilon_{t+1}^{\prime} C^{\prime} P C \varepsilon_{t+1}\right]=\sum_{j} \sum_{k} E_{t}\left[\varepsilon_{t+1}^{j} g_{j k} \varepsilon_{t+1}^{k}\right]=\sum_{j} g_{j j} E_{t}\left[\varepsilon_{t+1}^{j} \varepsilon_{t+1}^{j}\right]
$$

because $E_{t}\left[\varepsilon_{t+1}^{k} \varepsilon_{t+1}^{j}\right]=0$, when $k \neq j$

- But $\sum_{j} g_{j j}=\operatorname{trace}\left(C^{\prime} P C\right)$
- So

$$
\begin{aligned}
x_{t}^{\prime} P x_{t}+c= & \max _{y_{t}}\left[z_{t}^{\prime} M z_{t}+\beta x_{t}^{\prime} A^{\prime} P A x_{t}+\beta y_{t}^{\prime} B^{\prime} P B y_{t}\right. \\
& \left.+\beta \operatorname{trace}\left[C^{\prime} P C \Sigma\right]+\beta c\right]
\end{aligned}
$$

- $c=\beta$ trace $\left[C^{\prime} P C \Sigma\right] /(1-\beta)$

Adding stochastic shocks

- Using this value of c, get

$$
\begin{aligned}
x_{t}^{\prime} P x_{t} & =\max _{y_{t}}\left[z_{t}^{\prime} M z_{t}+\beta x_{t}^{\prime} A^{\prime} P A x_{t}+\beta y_{t}^{\prime} B^{\prime} P B y_{t}\right] \\
& =\max _{y_{t}}\left[x_{t}^{\prime} R x_{t}+y_{t}^{\prime} Q y_{t}+2 y_{t}^{\prime} W x_{t}+\beta x_{t}^{\prime} A^{\prime} P A x_{t}+\beta y_{t}^{\prime} B^{\prime} P B y_{t}\right]
\end{aligned}
$$

- First order conditions give

$$
\left[Q+\beta B^{\prime} P B\right] y_{t}=-\left[W+\beta B^{\prime} P A\right] x_{t}
$$

or

$$
y_{t}=F x_{t}=-\left[Q+\beta B^{\prime} P B\right]^{-1}\left[W+\beta B^{\prime} P A\right] x_{t}
$$

- Exactly the same first order condition (and therefore policy matrix) as in the deterministic case
- Find time path using

$$
x_{t+1}=[A+B F] x_{t}+C \varepsilon_{t+1} .
$$

.The basic Hansen example economy

- Agents max

$$
\max \sum_{t=0}^{\infty} \beta^{t}\left[\ln \left(k_{t}^{\theta} h_{t}^{1-\theta}+(1-\delta) k_{t}-k_{t+1}\right)+A \ln \left(1-h_{t}\right)\right]
$$

subject to the linear budget constrainta:

$$
k_{t+1}=k_{t+1}
$$

and

$$
\lambda_{t+1}=(1-\gamma)+\gamma \lambda_{t}+\varepsilon_{t+1}
$$

- Define the state variables as

$$
x_{t}=\left[\begin{array}{c}
1 \\
k_{t} \\
\lambda_{t}
\end{array}\right]
$$

and the controls as

$$
y_{t}=\left[\begin{array}{c}
k_{t+1} \\
h_{t}
\end{array}\right]
$$

.The basic Hansen example economy

- The budget constraint can be written as

$$
x_{t+1}=A x_{t}+B y_{t}+C \varepsilon_{t+1}
$$

or as

$$
\left[\begin{array}{c}
1 \\
k_{t+1} \\
\lambda_{t+1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
1-\gamma & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
1 \\
k_{t} \\
\lambda_{t}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
k_{t+1} \\
h_{t}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \varepsilon_{t+1}
$$

The basic Hansen example economy

- The second order taylor series expansion of the objective function is (note a parameters)

$$
\begin{aligned}
u(\cdot) \approx & \ln \left(\overline{\lambda k} \theta \bar{h}^{1-\theta}-\delta \bar{k}\right)+A \ln (1-\bar{h}) \\
& +\frac{1}{\bar{c}}[\theta \overline{\bar{k}}+(1-\delta)]\left(k_{t}-\bar{k}\right) \\
& +\frac{\bar{y}}{\bar{c}}\left(\lambda_{t}-\bar{\lambda}\right)-\frac{1}{\bar{c}}\left(k_{t+1}-\bar{k}\right) \\
& +\left[(1-\theta) \overline{\bar{c}} \frac{1}{\bar{h}}-\frac{A}{1-\bar{h}}\right]\left(h_{t}-\bar{h}\right) \\
& +\left[\begin{array}{c}
\left(k_{t}-\bar{k}\right) \\
\left(\lambda_{t}-\bar{\lambda}\right) \\
\left(k_{t+1}-\bar{k}\right) \\
\left(h_{t}-\bar{h}\right)
\end{array}\right]^{\prime}\left[\begin{array}{llll}
a_{11} & \widehat{a}_{1 \lambda} & a_{12} & a_{13} \\
\widehat{a}_{\lambda 1} & \widehat{a}_{\lambda \lambda} & \widehat{a}_{\lambda 2} & \widehat{a}_{\lambda 3} \\
a_{21} & \widehat{a}_{2 \lambda} & a_{32} & a_{32} \\
a_{31} & \widehat{a}_{3 \lambda} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
\left(k_{t}-\bar{k}\right) \\
\left(\lambda_{t}-\bar{\lambda}\right) \\
\left(k_{t+1}-\bar{k}\right) \\
\left(h_{t}-\bar{h}\right)
\end{array}\right]
\end{aligned}
$$

.The basic Hansen example economy

- Get an M matrix for quadratic optimization problem

$$
\max _{\left\{y_{t}\right\}} \sum_{t=0}^{\infty} z_{t \prime} M z_{t}
$$

subject to the budget constraints

$$
x_{t+1}=A x_{t}+B y_{t}+C \varepsilon_{t+1}
$$

The 5 x 5 matrix M in the quadratic version of the objective function is

$$
M=\left[\begin{array}{ccccc}
m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\
m_{21} & a_{11} & \widehat{a}_{1 \lambda} & a_{12} & a_{13} \\
m_{31} & \widehat{a}_{\lambda 1} & \widehat{a}_{\lambda \lambda} & \widehat{a}_{\lambda 2} & \widehat{a}_{\lambda 3} \\
m_{41} & a_{21} & \widehat{a}_{2 \lambda} & a_{22} & a_{23} \\
m_{51} & a_{31} & \widehat{a}_{3 \lambda} & a_{32} & a_{33}
\end{array}\right]
$$

The $m_{i j}$'s are described in detail the book
.The basic Hansen example economy

- Calibration and solution
- Only addition is $\gamma=.95$ (as before, based on estimates from US)
- Solve

$$
P_{k+1}=R+\beta A^{\prime} P_{k} A-\left(\beta A^{\prime} P_{k} B+W^{\prime}\right)\left[Q+\beta B^{\prime} P_{k} B\right]^{-1}\left(\beta B^{\prime} P_{k} A+W\right)
$$

- to find the matrix P

$$
P=\left[\begin{array}{ccc}
-124.0532 & 1.0657 & 15.6762 \\
1.0657 & -0.0259 & -0.1878 \\
15.6762 & -0.1878 & -1.9963
\end{array}\right]
$$

- and then use

$$
y_{t}=F x_{t}=-\left[Q+\beta B^{\prime} P B\right]^{-1}\left[W+\beta B^{\prime} P A\right] x_{t}
$$

- to find the policy function F,

$$
F=\left[\begin{array}{ccc}
-0.8470 & 0.9537 & 1.4340 \\
0.1789 & -0.0064 & 0.2357
\end{array}\right]
$$

.The basic Hansen example economy

- Given this F and the budget constraint, get

$$
\begin{aligned}
{\left[\begin{array}{c}
1 \\
k_{t+1} \\
\lambda_{t+1}
\end{array}\right]=} & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
.05 & 0 & .95
\end{array}\right]\left[\begin{array}{c}
1 \\
k_{t} \\
\lambda_{t}
\end{array}\right] } \\
& +\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ccc}
-0.8470 & 0.9537 & 1.4340 \\
0.1789 & -0.0064 & 0.2357
\end{array}\right]\left[\begin{array}{c}
1 \\
k_{t} \\
\lambda_{t}
\end{array}\right] \\
& +\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \varepsilon_{t+1}
\end{aligned}
$$

Figure 1: Impulse responses given in levels

- the laws of motion is

$$
\left[\begin{array}{c}
1 \\
k_{t+1} \\
\lambda_{t+1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-0.8470 & 0.9537 & 1.4340 \\
.05 & 0 & .95
\end{array}\right]\left[\begin{array}{c}
1 \\
k_{t} \\
\lambda_{t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1
\end{array}\right] \varepsilon_{t+1}
$$

.The basic Hansen example economy

- Impulse response in levels

The basic Hansen example economy

- Impulse response in log differences
.The basic Hansen example economy
- Comparing impulse response of linear quadratic to first method

Figure 2: Responses found using linear quadratic solution method

Figure 3: Comparing the two solution techniques using Hansen's model

