Macroeconomics II
 OLG suplemental material Working out the example economy

Prof. McCandless
UCEMA

September 23, 2008

Consumption function

- Given the utility function

$$
c_{t}^{h}(t) c_{t}^{h}(t+1)^{\beta}
$$

and the lifetime budget constraint

$$
c_{t}^{h}(t+1)=r_{t} w_{t} h_{t}^{h}(t)+w_{t+1} h_{t}^{h}(t+1)-r_{t} c_{t}^{h}(t),
$$

- the maximization problem can be written as

$$
c_{t}^{h}(t)\left[r_{t} w_{t} h_{t}^{h}(t)+w_{t+1} h_{t}^{h}(t+1)-r_{t} c_{t}^{h}(t)\right]^{\beta}
$$

taking the derivative with respect to $c_{t}^{h}(t)$ gives

$$
\left[r_{t} w_{t} h_{t}^{h}(t)+w_{t+1} h_{t}^{h}(t+1)-r_{t} c_{t}^{h}(t)\right]^{\beta}=\beta r_{t} c_{t}^{h}(t)\left[r_{t} w_{t} h_{t}^{h}(t)+w_{t+1} h_{t}^{h}(t+1)-r_{t} c_{t}^{h}(t)\right]^{\beta-1}
$$

.Consumption function

- This long equation simplifies to

$$
r_{t} w_{t} h_{t}^{h}(t)+w_{t+1} h_{t}^{h}(t+1)-r_{t} c_{t}^{h}(t)=\beta r_{t} c_{t}^{h}(t)
$$

and we get the consumption function

$$
\begin{aligned}
c_{t}^{h}(t) & =\frac{r_{t} w_{t} h_{t}^{h}(t)+w_{t+1} h_{t}^{h}(t+1)}{(\beta+1) r_{t}} \\
& =\frac{w_{t} h_{t}^{h}(t)}{(\beta+1)}+\frac{w_{t+1} h_{t}^{h}(t+1)}{(\beta+1) r_{t}}
\end{aligned}
$$

Savings function

- Savings is defined as

$$
s_{t}^{h}=w_{t} h_{t}^{h}(t)-c_{t}^{h}(t)
$$

- so

$$
s_{t}^{h}=w_{t} h_{t}^{h}(t)-\frac{w_{t} h_{t}^{h}(t)}{(\beta+1)}-\frac{w_{t+1} h_{t}^{h}(t+1)}{(\beta+1) r_{t}}=\frac{\beta w_{t} h_{t}^{h}(t)}{(\beta+1)}-\frac{w_{t+1} h_{t}^{h}(t+1)}{(\beta+1) r_{t}}
$$

Aggregate savings

- Summing over the $N(t)$ members of generation t, we get

$$
\begin{aligned}
S_{t}(\cdot) & \equiv \sum_{h=1}^{N(t)} s_{t}^{h}(\cdot) \\
& =\sum_{h=1}^{N(t)}\left[\frac{\beta w_{t} h_{t}^{h}(t)}{(\beta+1)}-\frac{w_{t+1} h_{t}^{h}(t+1)}{(\beta+1) r_{t}}\right] \\
S_{t} & =\frac{\beta w_{t} H_{t}(t)}{(\beta+1)}-\frac{w_{t+1} H_{t}(t+1)}{(\beta+1) r_{t}}
\end{aligned}
$$

Equilibrium

- In equilibrium,

$$
S_{t}=\frac{\beta w_{t} H_{t}(t)}{(\beta+1)}-\frac{w_{t+1} H_{t}(t+1)}{(\beta+1) r_{t}}=K(t+1)
$$

and

$$
r_{t}=\text { rental }_{t * 1}
$$

where

$$
\text { rental }_{t}=\theta K(t)^{\theta-1} H(t)^{1-\theta}
$$

and

$$
w_{t}=(1-\theta) K(t)^{\theta} H(t)^{-\theta}
$$

Equilibrium

- Substituting the wage and rental conditions into the $S_{t}=K(t+1)$ equilibrium condition gives

$$
\begin{aligned}
& \frac{\beta(1-\theta) K(t)^{\theta} H(t)^{-\theta} H_{t}(t)}{(\beta+1)}-\frac{(1-\theta) K(t+1)^{\theta} H(t+1)^{-\theta} H_{t}(t+1)}{(\beta+1) \theta K(t+1)^{\theta-1} H(t+1)^{1-\theta}} \\
= & K(t+1)
\end{aligned}
$$

and this simplifies to

$$
K(t+1)=\frac{\theta \beta \frac{H_{t}(t)}{H(t)^{\theta}}}{\left[\frac{H_{t}(t+1)}{H(t+1)}\right]+\frac{\theta(1+\beta)}{(1-\theta)}} K(t)^{\theta}
$$

