Staggered wage setting

George McCandless
CEMA

August 5, 2008

1 Staggered wage setting model

Staggered wage setting model

- Apply the Calvo price setting rules to wages
- Labor is differentiated
- a fraction $\left(1-\rho_{w}\right)$ of households can set their wages each period
- Group is randomly chosen
- ρ_{w} follow a rule of thumb
.The labor bundler
- A perfectly competitve firm (or firms) bundle labor
- They then sell this labor to the goods producing firms
- Bundling technology is

$$
H_{t}=\left[\int_{0}^{1}\left(h_{t}^{i}\right)^{\frac{\psi_{w}-1}{\psi_{w}}} d i\right]^{\frac{\psi_{w}}{\psi_{w}-1}}
$$

- Cost minimization on the part of the bundler implies

$$
W_{t}=\left[\int_{0}^{1} W_{t}(i)^{1-\psi_{w}} d i\right]^{\frac{1}{1-\psi_{w}}}
$$

The labor bundler

- Labor is differentiated
- The bundling firm demands different types of labor
- The demand for each type of labor is

$$
h_{t}^{i}=H_{t}\left(\frac{W_{t}}{W_{t}(i)}\right)^{\psi_{w}}
$$

Rules of thrumb

- The households that do not optimize follow a rule of thumb
- Some potential rules of thumb are
- Wages stay constant until optimization is possible:

$$
W_{t}(i)=W_{t-1}(i)
$$

- Wages are updated by stationary state inflation rate

$$
W_{t}(i)=\bar{\pi} W_{t-1}(i)
$$

- Wages are updated by lagged inflation

$$
W_{t}(i)=\frac{P_{t-1}}{P_{t-2}} W_{t-1}(i)
$$

- Choice of rule of thumb matters
- Note: we assume an insurance plan for labor to keep household incomes the same

Optimization problem of the family

- A household i chooses $\left\{c_{t+k}^{i}, m_{t}^{i}, k_{t+1}^{i}\right\}$ to maximize

$$
E_{t} \sum_{j=0}^{\infty} \beta^{j}\left[\ln c_{t+k}^{i}+A \ln \left(1-h_{t+j}^{i}\right)\right]
$$

subject to the cash in advance constraint

$$
P_{t} c_{t}^{i}=m_{t-1}^{i}+\left(g_{t}-1\right) M_{t-1}
$$

and the flow budget constraint

$$
k_{t+1}^{i}+\frac{m_{t}^{i}}{P_{t}}=\frac{W_{t}(i)}{P_{t}} h_{t}^{i}+r_{t} k_{t}^{i}+(1-\delta) k_{t}^{i}+b_{t}^{i}
$$

- b_{t}^{i} are the lumb sum transfers from the insurance plan
.Optimization problem of the family
- A household that can set its wage also chooses $W_{t}^{*}(i)$ to maximize

$$
E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j}\left[\ln c_{t+j}^{i}+A \ln \left(1-h_{t+j}^{i}\right)\right]
$$

- subject to the sequence of budget constraints

$$
P_{t+j} c_{t+j}^{i}=m_{t+j-1}^{i}+\left(g_{t+j}-1\right) M_{t+j-1}
$$

- and

$$
k_{t+j+1}^{i}+\frac{m_{t+j}^{i}}{P_{t+j}}=\frac{W_{t}^{*}(i)}{P_{t+j}} h_{t+j}^{i}+r_{t+j} k_{t+j}^{i}+(1-\delta) k_{t+j}^{i}+b_{t+j}^{i}
$$

- where

$$
h_{t+j}^{i}=H_{t+j}\left(\frac{W_{t+j}}{W_{t}^{*}(i)}\right)^{\psi_{w}}
$$

- Notice the change in the discount factor on utility: $\beta \rho_{w}$
.Optimization problem of the family
- First order condition from the basic problem

$$
E_{t} \frac{P_{t}}{P_{t+1} c_{t+1}^{i}}=\beta E_{t} \frac{P_{t+1}}{P_{t+2} c_{t+2}^{i}}\left(r_{t+1}+(1-\delta)\right)
$$

- Note the inclusion of $P_{t+2} c_{t+2}^{i}$
- First order condition from the wage setting problem (after some algebra)

$$
W_{t}^{*}(i)=\frac{\psi_{w}}{\left(\psi_{w}-1\right)} \frac{A}{\beta} \frac{E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{1-h_{t+j}^{i}} h_{t+j}^{i}}{E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{P_{t+1+j} c_{t+1+j}^{i}} h_{t+j}^{i}}
$$

- Plus budget constraints

Rest of the model

- Production function

$$
Y_{t}=\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}
$$

- the aggregate real wage

$$
w_{t}=\frac{W_{t}}{P_{t}}=(1-\theta) \lambda_{t} K_{t}^{\theta} H_{t}^{-\theta}=(1-\theta) \frac{Y_{t}}{H_{t}}
$$

- real rental rate

$$
r_{t}=\theta \lambda_{t} K_{t}^{\theta-1} H_{t}^{1-\theta}=\theta \frac{Y_{t}}{K_{t}}
$$

- labor bundler

$$
H_{t}=\left[\int_{0}^{1}\left(h_{t}^{i}\right)^{\frac{\psi_{w}-1}{\psi_{w}}} d i\right]^{\frac{\psi_{w}}{\psi_{w}-1}}
$$

- capital is summed,

$$
K_{t}=\int_{0}^{1} k_{t}^{i} d i
$$

Equilibrium conditions

- From identical households

$$
K_{t}=k_{t}^{i}
$$

- consumption

$$
C_{t}=c_{t}^{i}
$$

- Aggregating the real budget constraints

$$
K_{t+1}+\frac{M_{t}}{P_{t}}=\int_{0}^{1} \frac{W_{t}(i)}{P_{t}} h_{t}^{i} d i+r_{t} K_{t}+(1-\delta) K_{t}
$$

- the insurance payments or premiums drop out

$$
\int_{0}^{1} b_{t}^{i} d i=0
$$

Equilibrium conditions

- labor bundling firms are also perfectly competitive

$$
W_{t} H_{t}=\int_{0}^{1} W_{t}(i) h_{t}^{i} d i
$$

- aggregated family real budget constraint gives

$$
K_{t+1}+\frac{M_{t}}{P_{t}}=\frac{W_{t}}{P_{t}} H_{t}+r_{t} K_{t}+(1-\delta) K_{t} .
$$

.The full model

- The variables: $C_{t}, r_{t}, K_{t}, M_{t}, W_{t}, H_{t}, W_{t}^{*}, P_{t}, h_{t}^{*}, Y_{t}$, and shocks λ_{t} and g_{t}
- Equations
- aggregate version of the first order condition,

$$
E_{t} \frac{P_{t}}{P_{t+1} c_{t+1}^{i}}=\beta E_{t} \frac{P_{t+1}}{P_{t+2} c_{t+2}^{i}}\left(r_{t+1}+(1-\delta)\right)
$$

- aggregate budget constraint

$$
K_{t+1}+\frac{M_{t}}{P_{t}}=\frac{W_{t}}{P_{t}} H_{t}+r_{t} K_{t}+(1-\delta) K_{t}
$$

- cash-in-advance constraint

$$
P_{t} C_{t}=g_{t} M_{t-1}
$$

- money supply growth rule,

$$
M_{t}=g_{t} M_{t-1}
$$

The full model

- Equations
- nominal wage setting equation

$$
W_{t}^{*}(i)=\frac{\psi_{w}}{\left(\psi_{w}-1\right)} \frac{A}{\beta} \frac{E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{1-h_{t+j}^{i}} h_{t+j}^{i}}{E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{P_{t+1+j} c_{t+1+j}^{i}} h_{t+j}^{i}}
$$

- demand from the bundler for labor of the families that can fix their wages in period t

$$
h_{t}^{*}=H_{t}\left(\frac{W_{t}}{W_{t}^{*}(i)}\right)^{\psi_{w}}
$$

- aggregate nominal wage equation from the labor bundler

$$
W_{t}^{1-\psi}=\left(1-\rho_{w}\right)\left(W_{t}^{*}\right)^{1-\psi}+\rho_{w}\left(W_{t-1}\right)^{1-\psi}
$$

- demand for bundled labor from the firms

$$
\frac{W_{t}}{P_{t}}=(1-\theta) \frac{Y_{t}}{H_{t}}
$$

.The full model

- Equations
- demand for capital by the firms

$$
r_{t}=\theta \frac{Y_{t}}{K_{t}}
$$

- the production function,

$$
Y_{t}=\lambda_{t} K_{t}^{\theta} H_{t}^{1-\theta}
$$

- two stochastic process for technology and money growth,

$$
\ln \lambda_{t}=\gamma \ln \lambda_{t-1}+\varepsilon_{t}^{\lambda}
$$

and

$$
\ln g_{t}=\pi \ln g_{t-1}+\varepsilon_{t}^{g}
$$

Stationary state

- aggregate wage equation gives the result that

$$
\bar{W}^{*}=W
$$

- This implies

$$
\bar{h}^{*}=\bar{H}
$$

- wage setting equations gives the real wage as

$$
\overline{W / P}=\frac{\psi_{w}}{\left(\psi_{w}-1\right)} \frac{A}{\beta} \frac{\bar{C}}{(1-\bar{H})}
$$

- Rest pretty normal

- Results		\bar{r}	\bar{W} / P	$\bar{C}=\overline{M / P}$	\bar{H}	\bar{K}
	values	.0351	2.3706	0.8830	0.3206	12.1795
	1.1875					

Log-linearization

- Wage setting equation

$$
W_{t}^{*}(i)=\frac{\psi_{w}}{\left(\psi_{w}-1\right)} \frac{A}{\beta} \frac{E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{1-h_{t+j}^{i}} h_{t+j}^{i}}{E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{P_{t+1+j} c_{t+1+j}^{i}} h_{t+j}^{i}}
$$

- can be written as

$$
\begin{aligned}
& W_{t}^{*}(i) E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{P_{t+1+j} c_{t+1+j}^{i}} h_{t+j}^{i} \\
= & \frac{\psi_{w}}{\left(\psi_{w}-1\right)} \frac{A}{\beta} E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j} \frac{1}{1-h_{t+j}^{i}} h_{t+j}^{i}
\end{aligned}
$$

Log-linearization

- Log linearization of the left side gives

$$
\overline{W / P} \overline{\bar{H}} E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j}\left(1+\widetilde{W}_{t}^{*}(i)+\widetilde{h}_{t+j}^{i}-\widetilde{P}_{t+1+j}-\widetilde{C}_{t+1+j}\right)
$$

- of the right side is

$$
\frac{\psi_{w}}{\left(\psi_{w}-1\right)} \frac{A}{\beta} \frac{\bar{H}}{1-\bar{H}} E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j}\left(1+\frac{1}{1-\bar{H}} \widetilde{h}_{t+j}^{i}\right)
$$

Log-linearization (an interesting detail)

- in doing the log-linearization of the right side, one needs to take several approximations
- First one finds that

$$
\begin{aligned}
\frac{h_{t}^{i}}{1-h_{t}^{i}} & =\frac{\bar{H} e^{\widetilde{h}_{t}^{i}}}{1-\bar{H} e^{\widetilde{h}_{t}^{i}}} \approx \frac{\bar{H}\left(1+\widetilde{h}_{t}^{i}\right)}{1-\bar{H}\left(1+\widetilde{h}_{t}^{i}\right)} \\
& =\frac{\bar{H}}{1-\bar{H}} \frac{\left(1+\widetilde{h}_{t}^{i}\right)}{\left(1-\frac{\bar{H}}{1-\bar{H}} \widetilde{h}_{t}^{i}\right)}
\end{aligned}
$$

- The last item in the denominator, $\left(1-\frac{\bar{H}}{1-\bar{H}} \widetilde{h}_{t}^{i}\right)$
- is approximately equal to

$$
e^{-\frac{\bar{H}}{1-\bar{H}} \widetilde{h}_{t}^{i}}
$$

Log-linearization (an interesting detail)

- Substituting in, one gets

$$
\begin{aligned}
\frac{\bar{H}}{1-\bar{H}} \frac{\left(1+\widetilde{h}_{t}^{i}\right)}{e^{-\frac{\bar{H}}{1-\bar{H}} \widetilde{h}_{t}^{i}}} & =\frac{\bar{H}}{1-\bar{H}}\left(1+\widetilde{h}_{t}^{i}\right) e^{\frac{\bar{H}}{1-\bar{H}} \widetilde{h}_{t}^{i}} \\
& \approx \frac{\bar{H}}{1-\bar{H}}\left(1+\widetilde{h}_{t}^{i}\right)\left(1+\frac{\bar{H}}{1-\bar{H}} \widetilde{h}_{t}^{i}\right) \\
& =\frac{\bar{H}}{1-\bar{H}}\left(1+\frac{1}{1-\bar{H}} \widetilde{h}_{t+j}^{i}\right)
\end{aligned}
$$

Log-linearization (continued)

- stationary state of the above equation is

$$
\overline{W / P} \overline{\bar{H}}=\frac{\psi_{w}}{\left(\psi_{w}-1\right)} \frac{A}{\beta} \frac{\bar{H}}{1-\bar{H}}
$$

- SO

$$
E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j}\left(\widetilde{W}_{t}^{*}(i)-\frac{H}{1-\bar{H}} \widetilde{h}_{t+j}^{i}-\widetilde{P}_{t+1+j}-\widetilde{C}_{t+1+j}\right)=0
$$

- the families that can set their wages choose

$$
\widetilde{W}_{t}^{*}=\left(1-\beta \rho_{w}\right) E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j}\left(\widetilde{P}_{t+1+j}+\widetilde{C}_{t+1+j}+\frac{H}{1-\bar{H}} \widetilde{h}_{t+j}^{i}\right)
$$

Log-linearization (continued)

- Using the log-linear version of the wage evolution equation from the bundler,

$$
\widetilde{W}_{t}=\left(1-\rho_{w}\right) \widetilde{W}_{t}^{*}+\rho_{w} \widetilde{W}_{t-1}
$$

- gives

$$
\begin{aligned}
& \widetilde{W}_{t}-\rho_{w} \widetilde{W}_{t-1} \\
= & \left(1-\rho_{w}\right)\left(1-\beta \rho_{w}\right) \\
& \times E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j}\left(\widetilde{P}_{t+1+j}+\widetilde{C}_{t+1+j}+\frac{H}{1-\bar{H}} \widetilde{h}_{t+j}^{i}\right)
\end{aligned}
$$

Quasi-differencing (again)

- Operating on both sides of the above equation with $1-\beta \rho_{w} L^{-1}$
- gives for the left side

$$
\left(1+\beta \rho_{w} \rho_{w}\right) \widetilde{W}_{t}-\rho_{w} \widetilde{W}_{t-1}-\beta \rho_{w} \widetilde{W}_{t+1}
$$

- for the right side

$$
\begin{aligned}
& \left(1-\rho_{w}\right)\left(1-\beta \rho_{w}\right) \\
& \times E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j}\left(\widetilde{P}_{t+1+j}+\widetilde{C}_{t+1+j}+\frac{H}{1-\bar{H}} \widetilde{h}_{t+j}^{i}\right) \\
& -\left(1-\rho_{w}\right)\left(1-\beta \rho_{w}\right) \\
& \times E_{t} \sum_{j=0}^{\infty}\left(\beta \rho_{w}\right)^{j+1}\left(\widetilde{P}_{t+2+j}+\widetilde{C}_{t+2+j}+\frac{H}{1-\bar{H}} \widetilde{h}_{t+j+1}^{i}\right) \\
= & \left(1-\rho_{w}\right)\left(1-\beta \rho_{w}\right)\left(\widetilde{P}_{t+1}+\widetilde{C}_{t+1}+\frac{H}{1-\bar{H}} \widetilde{h}_{t}^{i}\right)
\end{aligned}
$$

Log-linearization (wage equation)

- Wage adjustment equation

$$
\begin{aligned}
& \left(1+\beta \rho_{w} \rho_{w}\right) \widetilde{W}_{t}-\rho_{w} \widetilde{W}_{t-1}-\beta \rho_{w} \widetilde{W}_{t+1} \\
= & \left(1-\rho_{w}\right)\left(1-\beta \rho_{w}\right)\left(\widetilde{P}_{t+1}+\widetilde{C}_{t+1}+\frac{H}{1-\bar{H}} \widetilde{h}_{t}^{*}\right)
\end{aligned}
$$

- to remove the individual labor quantities from the equation, use the log linear versions of the demand function for labor and the bundler's aggregate wage rule

$$
\begin{aligned}
\widetilde{h}_{t}^{*} & =\widetilde{H}_{t}+\psi_{w} \widetilde{W}_{t}-\psi_{w} \widetilde{W}_{t}^{*} \\
\widetilde{W}_{t} & =\left(1-\rho_{w}\right) \widetilde{W}_{t}^{*}+\rho_{w} \widetilde{W}_{t-1}
\end{aligned}
$$

- These give the result that

$$
\widetilde{h}_{t}^{*}=\widetilde{H}_{t}-\frac{\psi_{w} \rho_{w} \widetilde{W}_{t}}{\left(1-\rho_{w}\right)}+\frac{\psi_{w} \rho_{w} \widetilde{W}_{t-1}}{\left(1-\rho_{w}\right)}
$$

Log-linearization

- Final wage adjustment equation is

$$
\begin{aligned}
& {\left[\left(1-\beta \rho_{w}\right) \frac{\psi_{w} \rho_{w} \bar{H}}{1-\bar{H}}+\left(1+\beta \rho_{w} \rho_{w}\right)\right] \widetilde{W}_{t} } \\
& -\left[\left(1-\beta \rho_{w}\right) \frac{\psi_{w} \rho_{w} \bar{H}}{1-\bar{H}}+\rho_{w}\right] \widetilde{W}_{t-1}-\beta \rho_{w} \widetilde{W}_{t+1} \\
= & \left(1-\rho_{w}\right)\left(1-\beta \rho_{w}\right)\left(\widetilde{P}_{t+1}+\widetilde{C}_{t+1}+\frac{H}{1-\bar{H}} \widetilde{H}_{t}\right)
\end{aligned}
$$

Log-linearization (first order condition)

- FOC

$$
E_{t} \frac{P_{t}}{P_{t+1} c_{t+1}^{i}}=\beta E_{t} \frac{P_{t+1}}{P_{t+2} c_{t+2}^{i}}\left(r_{t+1}+(1-\delta)\right)
$$

- replace $P_{t+2} c_{t+2}^{i}$ with $g_{t+2} m_{t+1}^{i}$

$$
E_{t} \frac{P_{t}}{P_{t+1} C_{t+1}}=\beta E_{t} \frac{P_{t+1}}{g_{t+2} M_{t+1}}\left(r_{t+1}+(1-\delta)\right)
$$

- The log-linearization of this equation yields, after some simplification,

$$
E_{t}\left[\widetilde{P}_{t}-\widetilde{P}_{t+1}-\widetilde{C}_{t+1}\right]=E_{t}\left[\widetilde{P}_{t+1}-\widetilde{g}_{t+2}-\widetilde{M}_{t+1}+\beta \bar{r} \widetilde{r}_{t+1}\right]
$$

- use the stochastic process for the growth rate of money

$$
\widetilde{g}_{t}=\pi \widetilde{g}_{t-1}+\varepsilon_{t}^{g}
$$

to find the expected value for \widetilde{g}_{t+2} in terms of \widetilde{g}_{t+1}

- get

$$
\begin{aligned}
& E_{t}\left[\widetilde{P}_{t}-\widetilde{P}_{t+1}-\widetilde{C}_{t+1}\right]=E_{t}\left[\widetilde{P}_{t+1}-\pi \widetilde{g}_{t+1}-\widetilde{M}_{t+1}+\beta \bar{r} \widetilde{r}_{t+1}\right] \\
0= & \widetilde{P}_{t}-2 E_{t} \widetilde{P}_{t+1}-E_{t} \widetilde{C}_{t+1}+\pi E_{t} \widetilde{g}_{t+1}+E_{t} \widetilde{M}_{t+1}-\beta \bar{r} E_{t} \widetilde{r}_{t+1}, \\
0= & \bar{K} \widetilde{K}_{t+1}+\overline{M / P}\left[\widetilde{M}_{t}-\widetilde{P}_{t}\right]-\bar{Y} \widetilde{Y}_{t}-(1-\delta) \bar{K} \widetilde{K}_{t}, \\
0= & \widetilde{P}_{t}+\widetilde{C}_{t}-\widetilde{g}_{t}-\widetilde{M}_{t-1}, \\
0= & \widetilde{M}_{t}-\widetilde{g}_{t}-\widetilde{M}_{t-1}, \\
0= & {\left[\left(1-\beta \rho_{w}\right) \frac{\psi_{w} \rho_{w} \bar{H}}{1-\bar{H}}+\left(1+\beta \rho_{w} \rho_{w}\right)\right] \widetilde{W}_{t} } \\
& -\left[\left(1-\beta \rho_{w}\right) \frac{\psi_{w} \rho_{w} \bar{H}}{1-\bar{H}}+\rho_{w}\right] \widetilde{W}_{t-1}-\beta \rho_{w} \widetilde{W}_{t+1} \\
& -\left(1-\rho_{w}\right)\left(1-\beta \rho_{w}\right)\left(\widetilde{P}_{t+1}+\widetilde{C}_{t+1}+\frac{H}{1-\bar{H}} \widetilde{H}_{t}\right), \\
0= & \widetilde{W}_{t}-\widetilde{P}_{t}-\widetilde{Y}_{t}+\widetilde{H}_{t}, \\
0= & \widetilde{r}_{t}-\widetilde{Y}_{t}+\widetilde{K}_{t}, \\
0= & \widetilde{Y}_{t}-\widetilde{\lambda}_{t}-\theta \widetilde{K}_{t}-(1-\theta) \widetilde{H}_{t},
\end{aligned}
$$

Solving the model

- The state variables are $x_{t}=\left[\widetilde{K}_{t+1}, \widetilde{M}_{t}, \widetilde{P}_{t}, \widetilde{W}_{t}\right]^{\prime}$
- the jump variables are $y_{t}=\left[\widetilde{r}_{t}, \widetilde{C}_{t}, \widetilde{Y}_{t}, \widetilde{H}_{t}\right]^{\prime}$
- the stochastic shocks are $z_{t}=\left[\widetilde{\lambda}_{t}, \widetilde{g}_{t}\right]$
- Solve

$$
\begin{aligned}
0 & =A x_{t}+B x_{t-1}+C y_{t}+D z_{t} \\
0 & =E_{t}\left[F x_{t+1}+G x_{t}+H x_{t-1}+J y_{t+1}+K y_{t}+L z_{t+1}+M z_{t}\right] \\
z_{t+1} & =N z_{t}+\varepsilon_{t+1}
\end{aligned}
$$

- for policy functions

$$
x_{t+1}=P x_{t}+Q z_{t} \text { and } y_{t}=R x_{t}+S z_{t}
$$

Figure 1: Response of staggered wage setting economy to a . 01 technology shock

- Parameters used are $\rho_{w}=.7$ and $\psi_{w}=21$

$$
\begin{gathered}
P=\left[\begin{array}{cccc}
0.9671 & 0.0939 & 0 & -0.0939 \\
0 & 1 & 0 & 0 \\
-0.4310 & 0.7298 & 0 & 0.2702 \\
-0.0035 & 0.0750 & 0 & 0.9250
\end{array}\right] \\
Q=\left[\begin{array}{ccc}
0.1475 & 0.0908 \\
0 & 1 \\
-0.4836 & 0.7348 \\
0.0254 & 0.1002
\end{array}\right] \\
R=\left[\begin{array}{cccc}
-0.7600 & 1.1641 & 0 & -1.1641 \\
0.4310 & 0.2702 & 0 & -0.2702 \\
0.2400 & 1.1641 & 0 & -1.1641 \\
-0.1875 & 1.8189 & 0 & -1.8189
\end{array}\right] \\
S=\left[\begin{array}{ccc}
1.8728 & 1.1282 \\
0.4836 & 0.2652 \\
1.8728 & 1.1282 \\
1.3637 & 1.7629
\end{array}\right]
\end{gathered}
$$

Response to a .01 technology shock
Responses of real wages
Response to a . 01 money growth shock

Figure 2: Responses of real wages in the Cooley-Hansen model and in the staggered wage setting model

Figure 3: Response of staggered wage setting economy to a .01 money growth shock

