Macroeconomics II Staggered pricing models (part 1)

Prof. McCandless
UCEMA

October 24, 2006

1 Staggered Pricing model

Staggered pricing

- Method of Calvo
- Reference: Calvo, Guillermo (1983) "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, 12, p. 383-398.
- In each period, a fraction $1-\rho$ of firms can choose their price
- In other periods, the price either
- stays fixed
- is adjusted by some rule of thumb
- Firms have some market power they can exploit

Structure of economy

- Households
- buy final good for consumption
- buy final good for investment
- Final good firms
- Buy intermediate goods from intermediate goods firms
- bundles goods together to make final good
- are perfectly competitive
- Intermediate goods firms
- Produce a differentiated intermediate good
- Have some market power to set price
- Use capital and labor from factor market
- Can produce excess profits or losses

Final good firm

- Combines the $k \in[0,1]$ intermediate goods to make final good
- Production technology (bundler) is

$$
Y_{t}=\left[\int_{0}^{1} Y_{t}(k)^{\frac{\psi-1}{\psi}} d k\right]^{\frac{\psi}{\psi-1}}
$$

- ψ is the elasticity of substitution in production
- Firm maxes profits

$$
\text { profits }_{t}=P_{t} Y_{t}-\int_{0}^{1} P_{t}(k) Y_{t}(k) d k
$$

Final good firm

- Final good firm maximizes

$$
\max _{\left\{Y_{t}(k)\right\}} P_{t}\left[\int_{0}^{1} Y_{t}(k)^{\frac{\psi-1}{\psi}} d k\right]^{\frac{\psi}{\psi-1}}-\int_{0}^{1} P_{t}(k) Y_{t}(k) d i
$$

- first order condition

$$
P_{t}\left[\int_{0}^{1} Y_{t}(k)^{\frac{\psi-1}{\psi}} d k\right]^{\frac{1}{\psi-1}} Y_{t}(k)^{\frac{-1}{\psi}}=P_{t}(k)
$$

- this simplifies to a demand function for good k

$$
Y_{t}(k)=Y_{t}\left(\frac{P_{t}}{P_{t}(k)}\right)^{\psi}
$$

Final good firm

- Putting demand into the bundler function

$$
Y_{t}=\left[\int_{0}^{1}\left[Y_{t}\left(\frac{P_{t}}{P_{t}(k)}\right)^{\psi}\right]^{\frac{\psi-1}{\psi}} d k\right]^{\frac{\psi}{\psi-1}}=Y_{t}\left[\int_{0}^{1}\left(\frac{P_{t}}{P_{t}(k)}\right)^{\psi-1} d k\right]^{\frac{\psi}{\psi-1}}
$$

- which can be written as

$$
\frac{1}{P_{t}}=\left[\int_{0}^{1}\left(\frac{1}{P_{t}(k)}\right)^{\psi-1} d k\right]^{\frac{1}{\psi-1}}
$$

- final goods pricing rule

$$
P_{t}=\left[\int_{0}^{1} P_{t}(k)^{1-\psi} d k\right]^{\frac{1}{1-\psi}}
$$

Intermediate goods firms

- Some common rules of thumb
-1) keeping prices the same as the last updating

$$
P_{t}(k)=P_{t-1}(k)
$$

- 2) updating prices by a stationary state gross inflation rate $\bar{\pi}$,

$$
P_{t}(k)=\bar{\pi} P_{t-1}(k)
$$

- 3) updating prices by the one period lagged realized gross inflation rate, $\pi_{t-1}=P_{t-1} / P_{t-2}$,

$$
P_{t}(k)=\pi_{t-1} P_{t-1}(k)
$$

Intermediate goods firms

- Choose $P_{t}^{*}(k)$, to maximize

$$
\begin{aligned}
& E_{t} \sum_{i=0}^{\infty} \beta^{i} \rho^{i}\left[P_{t}^{*}(k) Y_{t+i}\left(\frac{P_{t+i}}{P_{t}^{*}(k)}\right)^{\psi}\right. \\
& \left.-P_{t+i} r_{t+i} K_{t+i}(k)-P_{t+i} w_{t+i} H_{t+i}(k)\right]
\end{aligned}
$$

- subject to the production technology,

$$
Y_{t+i}\left(\frac{P_{t+i}}{P_{t}^{*}(k)}\right)^{\psi}=\lambda_{t+i} K_{t+i}^{\theta}(k) H_{t+i}^{1-\theta}(k)
$$

Intermediate goods firms

- A firm that is maximizing above is also minimizing costs
- Minimization problem

$$
\min _{K_{t+i}(k), H_{t+i}(k)} r_{t+i} K_{t+i}(k)+w_{t+i} H_{t+i}(k)
$$

subject to the production technology

$$
Y_{t+i}(k)=\lambda_{t+i} K_{t+i}^{\theta}(k) H_{t+i}^{1-\theta}(k)
$$

- First order conditions

$$
\frac{(1-\theta) r_{t}}{\theta w_{t}}=\frac{H_{t}(k)}{K_{t}(k)}
$$

Intermediate goods firms: Costs

- Combine FOC with production function
- Demand equations for factors

$$
H_{t+i}(k)=\frac{Y_{t+i}(k)}{\lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta}
$$

and

$$
K_{t+i}(k)=\frac{Y_{t+i}(k)}{\lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta-1}
$$

Intermediate goods firms: Costs

- Put these demand equations into cost equation

$$
r_{t+i} \frac{Y_{t+i}(k)}{\lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta-1}+w_{t+i} \frac{Y_{t+i}(k)}{\lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta}
$$

- Real costs equal

$$
\frac{w_{t+i}}{(1-\theta) \lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta} Y_{t+i}(k)
$$

- Marginal costs are

$$
\frac{w_{t+i}}{(1-\theta) \lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta}
$$

Intermediate goods firms: maximization problem

- Rewriting costs get

$$
\begin{aligned}
& \max _{P_{t}^{*}(k)} E_{t} \sum_{i=0}^{\infty}(\beta \rho)^{i}\left[P_{t}^{*}(k) Y_{t+i}\left(\frac{P_{t+i}}{P_{t}^{*}(k)}\right)^{\psi}\right. \\
& \left.-P_{t+i} \frac{w_{t+i}}{(1-\theta) \lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta} Y_{t+i}\left(\frac{P_{t+i}}{P_{t}^{*}(k)}\right)^{\psi}\right]
\end{aligned}
$$

- or

$$
\begin{aligned}
& \max _{P_{t}^{*}(k)} E_{t} \sum_{i=0}^{\infty}(\beta \rho)^{i} Y_{t+i}\left(\frac{P_{t+i}}{P_{t}^{*}(k)}\right)^{\psi} \\
& \times\left[P_{t}^{*}(k)-\frac{P_{t+i} w_{t+i}}{(1-\theta) \lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta}\right]
\end{aligned}
$$

Intermediate goods firms: maximization problem

- FOC is

$$
0=E_{t} \sum_{i=0}^{\infty}(\beta \rho)^{i} Y_{t+i}(k)\left[1-\psi+\frac{\psi P_{t+i} w_{t+i}}{P_{t}^{*}(k)(1-\theta) \lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta}\right]
$$

- Price setting rule is

$$
P_{t}^{*}(k)=\frac{\psi}{\psi-1} \frac{E_{t} \sum_{i=0}^{\infty}(\beta \rho)^{i} P_{t+i} Y_{t+i}(k) \frac{w_{t+i}}{(1-\theta) \lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta}}{E_{t} \sum_{i=0}^{\infty}(\beta \rho)^{i} Y_{t+i}(k)}
$$

- $\frac{\psi}{\psi-1}$ is the markup of discounted stream of expected nominal costs divided by discounted stream of expected output

Price process

- All firms fixing prices at date t set the same price
- All set to $P_{t}^{*}(1-\rho$ firms $)$
- Recall that firms that don't fix price keep old one (ρ firms)
- Prices follow updating process of

$$
P_{t}^{1-\psi}=\rho P_{t-1}^{1-\psi}+(1-\rho)\left(P_{t}^{*}\right)^{1-\psi}
$$

.The households

- Unit mass of households
- Max

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t}\left[\ln c_{t}^{i}+B h_{t}^{i}\right]
$$

- subject to a cash in advance constraint

$$
P_{t} c_{t}^{i}=m_{t-1}^{i}+\left(g_{t}-1\right) M_{t-1}
$$

- and a real budget constraint,

$$
k_{t+1}^{i}+\frac{m_{t}^{i}}{P_{t}}=w_{t} h_{t}^{i}+r_{t} k_{t}^{i}+\xi_{t}^{i}+(1-\delta) k_{t}^{i}
$$

.The households

- First order conditions for family i are

$$
\frac{B}{w_{t}}=E_{t}\left[\frac{B \beta}{w_{t+1}}\left(r_{t+1}+(1-\delta)\right)\right]
$$

and

$$
-E_{t}\left[\frac{\beta}{c_{t+1}^{i} P_{t+1}}\right]=\frac{B}{w_{t} P_{t}}
$$

Equilibrium conditions

- Aggregation across families gives

$$
\begin{aligned}
C_{t} & =c_{t}^{i} \\
K_{t} & =k_{t}^{i} \\
H_{t} & =h_{t}^{i}
\end{aligned}
$$

and

$$
M_{t}=m_{t}^{i}
$$

- Aggregating labor across intermediate firms

$$
H_{t}=\int_{0}^{1} H_{t}(k) d k
$$

Equilibrium conditions

- Use the demand for labor

$$
H_{t}(k)=\frac{Y_{t}(k)}{\lambda_{t}}\left[\frac{r_{t}(1-\theta)}{w_{t i} \theta}\right]^{\theta}
$$

- equilibrium condition for the labor market in period t is

$$
H_{t}=\int_{0}^{1} H_{t}(k) d k=\frac{1}{\lambda_{t}}\left[\frac{r_{t}(1-\theta)}{w_{t} \theta}\right]^{\theta} \int_{0}^{1} Y_{t}(k) d k
$$

Equilibrium conditions

- For the market for capital,

$$
K_{t}=\int_{0}^{1} K_{t}(k) d k
$$

- Using the demand for capital

$$
K_{t}(k)=\frac{Y_{t}(k)}{\lambda_{t}}\left[\frac{r_{t}(1-\theta)}{w_{t} \theta}\right]^{\theta-1}
$$

- the equilibrium condition for the capital market in period t is

$$
K_{t}=\int_{0}^{1} K_{t}(k) d k=\frac{1}{\lambda_{t}}\left[\frac{r_{t}(1-\theta)}{w_{t} \theta}\right]^{\theta-1} \int_{0}^{1} Y_{t}(k) d k
$$

- Note integral of output (not bundler)

Equilibrium conditions

- Aggregate excess profits paid to the families in period t are

$$
\begin{aligned}
P_{t} \xi_{t} & =P_{t} \int_{0}^{1} \xi_{t}^{i} d i=P_{t} \int_{0}^{1} \operatorname{profits}(k) d k \\
& =\int_{0}^{1} P_{t}(k) Y_{t}(k) d k-P_{t} \frac{w_{t}}{(1-\theta) \lambda_{t}}\left[\frac{r_{t}(1-\theta)}{w_{t} \theta}\right]^{\theta} \int_{0}^{1} Y_{t}(k) d k
\end{aligned}
$$

- Since the final good firms are perfectly competitive and make no profits,

$$
P_{t} Y_{t}=\int_{0}^{1} P_{t}(k) Y_{t}(k) d k
$$

- Substituting this into the total profits equation for period t, and removing the price level P_{t}, gives excess profits as

$$
\xi_{t}=\left(Y_{t}-\frac{w_{t}}{(1-\theta) \lambda_{t}}\left[\frac{r_{t}(1-\theta)}{w_{t} \theta}\right]^{\theta} \int_{0}^{1} Y_{t}(k) d k\right)
$$

.The full model

- FOCs of household

$$
\begin{aligned}
\frac{1}{w_{t}} & =E_{t}\left[\frac{\beta}{w_{t+1}}\left(r_{t+1}+(1-\delta)\right)\right] \\
& -E_{t}\left[\frac{\beta}{C_{t+1} P_{t+1}}\right]=\frac{B}{w_{t} P_{t}}
\end{aligned}
$$

- the aggregated cash-in-advance constraint,

$$
P_{t} C_{t}=g_{t} M_{t-1}
$$

- aggregated family's real budget constraint,

$$
K_{t+1}+\frac{M_{t}}{P_{t}}=w_{t} H_{t}+r_{t} K_{t}+\xi_{t}+(1-\delta) K_{t}
$$

.The full model

- all income goes to the families and sums to output

$$
Y_{t}=w_{t} H_{t}+r_{t} K_{t}+\xi_{t}
$$

- family's real budget constraint will be used as

$$
K_{t+1}+\frac{M_{t}}{P_{t}}=Y_{t}+(1-\delta) K_{t}
$$

- Price setting equation

$$
P_{t}^{*}(k)=\frac{\psi}{\psi-1} \frac{E_{t} \sum_{i=0}^{\infty}(\beta \rho)^{i} P_{t+i} Y_{t+i}(k) \frac{w_{t+i}}{(1-\theta) \lambda_{t+i}}\left[\frac{r_{t+i}(1-\theta)}{w_{t+i} \theta}\right]^{\theta}}{E_{t} \sum_{i=0}^{\infty}(\beta \rho)^{i} Y_{t+i}(k)}
$$

.The full model

- cost minimization,

$$
\frac{(1-\theta) r_{t}}{\theta w_{t}}=\frac{H_{t}(k)}{K_{t}(k)}
$$

- aggregate production equation,

$$
\int_{0}^{1} Y_{t}(k) d k=\lambda_{t} H_{t}^{\theta} K_{t}^{1-\theta}
$$

- rule determining the final good price in period t,

$$
P_{t}^{1-\psi}=\rho P_{t-1}^{1-\psi}+(1-\rho)\left(P_{t}^{*}\right)^{1-\psi}
$$

- money supply growth rule

$$
M_{t}=g_{t} M_{t-1}
$$

stochastic process for money growth and technology,

$$
\begin{aligned}
& \ln \lambda_{t}=\gamma \ln \lambda_{t-1}+\varepsilon_{t}^{\lambda} \\
& \ln g_{t}=\pi \ln g_{t-1}+\varepsilon_{t}^{\lambda}
\end{aligned}
$$

Interesting points of stationary state

- Much is the same as before, except
- The rule for determining the final goods price gives

$$
\bar{P}^{1-\psi}=\rho \bar{P}^{1-\psi}+(1-\rho)\left(\bar{P}^{*}(k)\right)^{1-\psi}
$$

- or that

$$
\bar{P}=\bar{P}^{*}(k)=\bar{P}(k)
$$

- Putting this into the demand function for intermediate good k gives

$$
\bar{Y}(k)=\bar{Y}\left(\frac{\bar{P}}{\bar{P}(k)}\right)^{\psi}=\bar{Y}
$$

Interesting points of stationary state

- The price setting rule gives

$$
\begin{aligned}
\bar{P}^{*}(k) & =\frac{\psi}{\psi-1} \frac{\frac{1}{1-\beta \rho} \overline{P Y} \frac{\bar{w}}{(1-\theta) \bar{\lambda}}\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta}}{\frac{1}{1-\beta \rho} \bar{Y}} \\
& =\frac{\psi}{\psi-1} \bar{P} \frac{\bar{w}}{(1-\theta) \bar{\lambda}}\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta}
\end{aligned}
$$

- or a relation for wages and rentals

$$
\frac{\psi}{\psi-1}=\frac{1}{\frac{\bar{w}}{(1-\theta)}\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta}}
$$

- wages are

$$
\bar{w}=\left[\frac{(\psi-1)(1-\theta)^{1-\theta} \theta^{\theta}}{\psi \bar{r}^{\theta}}\right]^{\frac{1}{1-\theta}}
$$

Interesting points of stationary state

- Dividends are

$$
\bar{\xi}=\bar{Y}\left(1-\frac{\bar{w}}{(1-\theta)}\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta}\right)=\frac{\bar{Y}}{\psi}
$$

- Output is not yet determined. Using the real budget constraint, the first order condition for consumption, and the results above

$$
-\frac{\beta \bar{w}}{B}=\bar{w}\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta} \bar{Y}+\frac{\bar{Y}}{\psi}+(\bar{r}-\delta)\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta-1} \bar{Y},
$$

- This can be rewritten as

$$
\bar{Y}=\frac{-\beta \bar{w}}{B\left(\bar{w}\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta}+\frac{1}{\psi}+(\bar{r}-\delta)\left[\frac{\bar{r}(1-\theta)}{\bar{w} \theta}\right]^{\theta-1}\right)}
$$

Stationary states

- $\beta=.99, B=-2.5805, \delta=.025, \theta=.36$. Galí argues that $\rho=.75$ and $\psi=11$, a value that gives a 10% markup in the stationary state.
- Stationary states for this model are

Variable	\bar{r}	\bar{w}	\bar{Y}	\bar{H}	\bar{K}	$\bar{\xi}$	\bar{C}
SS value	.0351	2.0426	1.0218	.2901	9.5271	.0929	.7836

